Bliss-Shader/shaders/world-1/composite2.fsh

657 lines
21 KiB
Plaintext
Raw Normal View History

2023-01-12 15:00:14 -05:00
#version 120
//#extension GL_EXT_gpu_shader4 : disable
2023-01-12 15:28:19 -05:00
#include "/lib/settings.glsl"
2023-06-23 13:03:58 -04:00
#define NETHER
#include "/lib/diffuse_lighting.glsl"
2023-01-12 15:28:19 -05:00
2023-01-12 15:00:14 -05:00
varying vec2 texcoord;
flat varying vec2 TAA_Offset;
flat varying float tempOffsets;
const bool colortex5MipmapEnabled = true;
const bool colortex4MipmapEnabled = true;
2023-01-12 15:00:14 -05:00
uniform sampler2D colortex0;//clouds
uniform sampler2D colortex1;//albedo(rgb),material(alpha) RGBA16
uniform sampler2D colortex4;//Skybox
uniform sampler2D colortex3;
2023-01-12 15:00:14 -05:00
uniform sampler2D colortex7;
uniform sampler2D colortex5;
uniform sampler2D colortex2;
2023-01-12 15:00:14 -05:00
uniform sampler2D colortex8;
uniform sampler2D colortex15;
uniform sampler2D colortex6;//Skybox
2023-01-12 15:00:14 -05:00
uniform sampler2D depthtex1;//depth
uniform sampler2D depthtex0;//depth
uniform sampler2D noisetex;//depth
uniform int heldBlockLightValue;
uniform int frameCounter;
uniform int isEyeInWater;
uniform mat4 shadowModelViewInverse;
uniform mat4 shadowProjectionInverse;
uniform float far;
uniform float near;
uniform float frameTimeCounter;
uniform float rainStrength;
uniform mat4 gbufferProjection;
uniform mat4 gbufferProjectionInverse;
uniform mat4 gbufferModelViewInverse;
uniform mat4 shadowModelView;
uniform mat4 shadowProjection;
uniform mat4 gbufferModelView;
uniform mat4 gbufferPreviousModelView;
uniform mat4 gbufferPreviousProjection;
uniform vec3 previousCameraPosition;
2023-01-12 15:00:14 -05:00
uniform vec2 texelSize;
uniform float viewWidth;
uniform float viewHeight;
uniform float aspectRatio;
uniform vec3 cameraPosition;
uniform vec3 sunVec;
uniform ivec2 eyeBrightnessSmooth;
2023-01-12 15:00:14 -05:00
#define diagonal3(m) vec3((m)[0].x, (m)[1].y, m[2].z)
#define projMAD(m, v) (diagonal3(m) * (v) + (m)[3].xyz)
2023-01-12 15:00:14 -05:00
vec3 toScreenSpace(vec3 p) {
vec4 iProjDiag = vec4(gbufferProjectionInverse[0].x, gbufferProjectionInverse[1].y, gbufferProjectionInverse[2].zw);
vec3 p3 = p * 2. - 1.;
vec4 fragposition = iProjDiag * p3.xyzz + gbufferProjectionInverse[3];
return fragposition.xyz / fragposition.w;
}
#include "/lib/color_transforms.glsl"
#include "/lib/waterBump.glsl"
#include "/lib/sky_gradient.glsl"
2023-01-12 15:00:14 -05:00
float ld(float dist) {
return (2.0 * near) / (far + near - dist * (far - near));
}
vec2 RENDER_SCALE = vec2(1.0);
#undef LIGHTSOURCE_REFLECTION
#include "/lib/specular.glsl"
2023-01-12 15:00:14 -05:00
vec3 normVec (vec3 vec){
return vec*inversesqrt(dot(vec,vec));
}
float lengthVec (vec3 vec){
return sqrt(dot(vec,vec));
}
#define fsign(a) (clamp((a)*1e35,0.,1.)*2.-1.)
float triangularize(float dither)
{
float center = dither*2.0-1.0;
dither = center*inversesqrt(abs(center));
return clamp(dither-fsign(center),0.0,1.0);
}
2023-01-12 15:00:14 -05:00
float interleaved_gradientNoise(){
// vec2 coord = gl_FragCoord.xy + (frameCounter%40000);
vec2 coord = gl_FragCoord.xy + frameTimeCounter;
// vec2 coord = gl_FragCoord.xy;
float noise = fract( 52.9829189 * fract( (coord.x * 0.06711056) + (coord.y * 0.00583715)) );
return noise ;
2023-01-12 15:00:14 -05:00
}
vec2 R2_dither(){
vec2 alpha = vec2(0.75487765, 0.56984026);
return vec2(fract(alpha.x * gl_FragCoord.x + alpha.y * gl_FragCoord.y + 1.0/1.6180339887 * frameCounter), fract((1.0-alpha.x) * gl_FragCoord.x + (1.0-alpha.y) * gl_FragCoord.y + 1.0/1.6180339887 * frameCounter));
}
float blueNoise(){
return fract(texelFetch2D(noisetex, ivec2(gl_FragCoord.xy)%512, 0).a + 1.0/1.6180339887 * (frameCounter*0.5+0.5) );
}
vec4 blueNoise(vec2 coord){
return texelFetch2D(colortex6, ivec2(coord)%512 , 0) ;
}
2023-01-12 15:00:14 -05:00
vec3 fp10Dither(vec3 color,float dither){
const vec3 mantissaBits = vec3(6.,6.,5.);
vec3 exponent = floor(log2(color));
return color + dither*exp2(-mantissaBits)*exp2(exponent);
}
2023-01-12 15:00:14 -05:00
float facos(float sx){
float x = clamp(abs( sx ),0.,1.);
return sqrt( 1. - x ) * ( -0.16882 * x + 1.56734 );
}
vec3 decode (vec2 encn){
vec3 n = vec3(0.0);
encn = encn * 2.0 - 1.0;
n.xy = abs(encn);
n.z = 1.0 - n.x - n.y;
n.xy = n.z <= 0.0 ? (1.0 - n.yx) * sign(encn) : encn;
return clamp(normalize(n.xyz),-1.0,1.0);
}
vec2 decodeVec2(float a){
const vec2 constant1 = 65535. / vec2( 256., 65536.);
const float constant2 = 256. / 255.;
return fract( a * constant1 ) * constant2 ;
}
2023-01-12 15:00:14 -05:00
vec2 tapLocation(int sampleNumber,int nb, float nbRot,float jitter,float distort)
{
float alpha0 = sampleNumber/nb;
float alpha = (sampleNumber+jitter)/nb;
float angle = jitter*6.28 + alpha * 4.0 * 6.28;
float sin_v, cos_v;
sin_v = sin(angle);
cos_v = cos(angle);
return vec2(cos_v, sin_v)*sqrt(alpha);
}
vec3 BilateralFiltering(sampler2D tex, sampler2D depth,vec2 coord,float frDepth,float maxZ){
vec4 sampled = vec4(texelFetch2D(tex,ivec2(coord),0).rgb,1.0);
return vec3(sampled.x,sampled.yz/sampled.w);
}
2023-01-12 15:00:14 -05:00
vec3 toShadowSpaceProjected(vec3 p3){
p3 = mat3(gbufferModelViewInverse) * p3 + gbufferModelViewInverse[3].xyz;
p3 = mat3(shadowModelView) * p3 + shadowModelView[3].xyz;
p3 = diagonal3(shadowProjection) * p3 + shadowProjection[3].xyz;
return p3;
}
vec2 tapLocation(int sampleNumber, float spinAngle,int nb, float nbRot,float r0)
{
float alpha = (float(sampleNumber*1.0f + r0) * (1.0 / (nb)));
float angle = alpha * (nbRot * 6.28) + spinAngle*6.28;
float ssR = alpha;
float sin_v, cos_v;
sin_v = sin(angle);
cos_v = cos(angle);
return vec2(cos_v, sin_v)*ssR;
}
float ssao(vec3 fragpos, float dither,vec3 normal)
{
float mulfov = 1.0;
2023-01-12 15:00:14 -05:00
ivec2 pos = ivec2(gl_FragCoord.xy);
const float tan70 = tan(70.*3.14/180.);
2023-01-12 15:00:14 -05:00
float mulfov2 = gbufferProjection[1][1]/tan70;
const float PI = 3.14159265;
const float samplingRadius = 0.712;
float angle_thresh = 0.05;
2023-01-12 15:00:14 -05:00
float rd = mulfov2*0.05;
//pre-rotate direction
float n = 0.;
2023-01-12 15:00:14 -05:00
float occlusion = 0.0;
2023-01-12 15:00:14 -05:00
vec2 acc = -vec2(TAA_Offset)*texelSize*0.5;
float mult = (dot(normal,normalize(fragpos))+1.0)*0.5+0.5;
2023-01-12 15:00:14 -05:00
vec2 v = fract(vec2(dither,interleaved_gradientNoise()) + (frameCounter%10000) * vec2(0.75487765, 0.56984026));
for (int j = 0; j < 7+2 ;j++) {
vec2 sp = tapLocation(j,v.x,7+2,2.,v.y);
vec2 sampleOffset = sp*rd;
ivec2 offset = ivec2(gl_FragCoord.xy + sampleOffset*vec2(viewWidth,viewHeight));
if (offset.x >= 0 && offset.y >= 0 && offset.x < viewWidth && offset.y < viewHeight ) {
vec3 t0 = toScreenSpace(vec3(offset*texelSize+acc+0.5*texelSize,texelFetch2D(depthtex1,offset,0).x));
2023-01-12 15:00:14 -05:00
vec3 vec = t0.xyz - fragpos;
float dsquared = dot(vec,vec);
2023-01-12 15:00:14 -05:00
if (dsquared > 1e-5){
if (dsquared < fragpos.z*fragpos.z*0.05*0.05*mulfov2*2.*1.412){
float NdotV = clamp(dot(vec*inversesqrt(dsquared), normalize(normal)),0.,1.);
occlusion += NdotV;
2023-01-12 15:00:14 -05:00
}
n += 1.0;
2023-01-12 15:00:14 -05:00
}
}
2023-01-12 15:00:14 -05:00
}
return clamp(1.0-occlusion/n*2.0,0.,1.0);
2023-01-12 15:00:14 -05:00
}
vec3 viewToWorld(vec3 viewPosition) {
vec4 pos;
pos.xyz = viewPosition;
pos.w = 0.0;
pos = gbufferModelViewInverse * pos;
return pos.xyz;
2023-01-12 15:00:14 -05:00
}
vec3 worldToView(vec3 worldPos) {
vec4 pos = vec4(worldPos, 0.0);
pos = gbufferModelView * pos;
return pos.xyz;
}
void waterVolumetrics(inout vec3 inColor, vec3 rayStart, vec3 rayEnd, float estEndDepth, float estSunDepth, float rayLength, float dither, vec3 waterCoefs, vec3 scatterCoef, vec3 ambient){
inColor *= exp(-rayLength * waterCoefs); //No need to take the integrated value
int spCount = rayMarchSampleCount;
vec3 start = toShadowSpaceProjected(rayStart);
vec3 end = toShadowSpaceProjected(rayEnd);
vec3 dV = (end-start);
//limit ray length at 32 blocks for performance and reducing integration error
//you can't see above this anyway
float maxZ = min(rayLength,12.0)/(1e-8+rayLength);
dV *= maxZ;
vec3 dVWorld = -mat3(gbufferModelViewInverse) * (rayEnd - rayStart) * maxZ;
rayLength *= maxZ;
float dY = normalize(mat3(gbufferModelViewInverse) * rayEnd).y * rayLength;
estEndDepth *= maxZ;
estSunDepth *= maxZ;
vec3 absorbance = vec3(1.0);
vec3 vL = vec3(0.0);
float expFactor = 11.0;
vec3 progressW = gbufferModelViewInverse[3].xyz+cameraPosition;
for (int i=0;i<spCount;i++) {
float d = (pow(expFactor, float(i+dither)/float(spCount))/expFactor - 1.0/expFactor)/(1-1.0/expFactor);
float dd = pow(expFactor, float(i+dither)/float(spCount)) * log(expFactor) / float(spCount)/(expFactor-1.0);
vec3 spPos = start.xyz + dV*d;
progressW = gbufferModelViewInverse[3].xyz+cameraPosition + d*dVWorld;
vec3 ambientMul = exp(-max(estEndDepth * d,0.0) * waterCoefs);
vec3 light = (ambientMul*ambient) * scatterCoef;
vL += (light - light * exp(-waterCoefs * dd * rayLength)) / waterCoefs *absorbance;
absorbance *= exp(-dd * rayLength * waterCoefs);
2023-01-12 15:00:14 -05:00
}
inColor += vL;
2023-01-12 15:00:14 -05:00
}
void Emission(
inout vec3 Lighting,
vec3 Albedo,
float Emission
){
// if( Emission < 255.0/255.0 ) Lighting = mix(Lighting, Albedo * Emissive_Brightness, pow(Emission, Emissive_Curve)); // old method.... idk why
if( Emission < 255.0/255.0 ) Lighting += (Albedo * Emissive_Brightness * 0.25) * pow(Emission, Emissive_Curve);
2023-01-12 15:00:14 -05:00
}
2023-06-07 17:33:50 -04:00
vec3 SubsurfaceScattering_sky(vec3 albedo, float Scattering, float Density){
vec3 absorbed = max(luma(albedo) - albedo,0.0);
// vec3 scatter = exp(-sqrt(max(Scattering+0.05,0.0) * absorbed * 25)) * exp(Scattering * -5);
vec3 scatter = exp(-sqrt(Scattering * absorbed * 5)) * pow((-Scattering+1.0)*1.25,2.0);
scatter *= pow(Density,LabSSS_Curve);
// temporary
scatter *= ambientsss_brightness;
return scatter;
}
void ScreenSpace_SSS(inout float sss, vec3 fragpos, vec2 noise, vec3 normal){
ivec2 pos = ivec2(gl_FragCoord.xy);
const float tan70 = tan(70.*3.14/180.);
float dist = 1.0 + (clamp(fragpos.z*fragpos.z/50.0,0,2)); // shrink sample size as distance increases
float mulfov2 = gbufferProjection[1][1]/(tan70 * dist);
float dist3 = clamp(1-exp( fragpos.z*fragpos.z / -50),0,1);
float maxR2_2 = mix(10, fragpos.z*fragpos.z*mulfov2*2./50.0, dist3);
float rd = mulfov2 * 0.1;
vec2 acc = -(TAA_Offset*(texelSize/2)) ;
2023-06-07 17:33:50 -04:00
// int seed = (frameCounter%40000)*2 + (1+frameCounter);
// float randomDir = fract(R2_samples(seed).y + noise.x ) * 1.61803398874 ;
float n = 0.0;
vec2 v = fract(vec2(noise.x,interleaved_gradientNoise()) + (frameCounter%10000) * vec2(0.75487765, 0.56984026));
for (int j = 0; j < 7+2 ;j++) {
vec2 sp = tapLocation(j,v.x,7+2,2.,v.y);
// vec2 sp = tapLocation_alternate(j, 0.0, 7, 20, randomDir);
vec2 sampleOffset = sp*rd;
ivec2 offset = ivec2(gl_FragCoord.xy + sampleOffset*vec2(viewWidth,viewHeight*aspectRatio));
2023-06-07 17:33:50 -04:00
if (offset.x >= 0 && offset.y >= 0 && offset.x < viewWidth && offset.y < viewHeight ) {
vec3 t0 = toScreenSpace(vec3(offset*texelSize+acc+0.5*texelSize,texelFetch2D(depthtex1,offset,0).x) );
2023-06-07 17:33:50 -04:00
vec3 vec = t0.xyz - fragpos;
float dsquared = dot(vec,vec);
if (dsquared > 1e-5){
if(dsquared > maxR2_2){
float NdotV = 1.0 - clamp(dot(vec*dsquared, normalize(normal)),0.,1.);
sss += max((NdotV - (1.0-NdotV)) * clamp(1.0-maxR2_2/dsquared,0.0,1.0) ,0.0);
}
n += 1;
}
}
}
sss = max(1.0 - sss/n, 0.0);
}
vec3 rayTrace_GI(vec3 dir,vec3 position,float dither, float quality){
vec3 clipPosition = toClipSpace3(position);
float rayLength = ((position.z + dir.z * far*sqrt(3.)) > -near) ?
(-near -position.z) / dir.z : far*sqrt(3.);
vec3 direction = normalize(toClipSpace3(position+dir*rayLength)-clipPosition); //convert to clip space
direction.xy = normalize(direction.xy);
//get at which length the ray intersects with the edge of the screen
vec3 maxLengths = (step(0.,direction)-clipPosition) / direction;
float mult = maxLengths.y;
vec3 stepv = direction * mult / quality*vec3(RENDER_SCALE,1.0) * dither;
vec3 spos = clipPosition*vec3(RENDER_SCALE,1.0) ;
spos.xy += TAA_Offset*texelSize*0.5/RENDER_SCALE;
float biasdist = clamp(position.z*position.z/50.0,1,2); // shrink sample size as distance increases
for(int i = 0; i < int(quality); i++){
spos += stepv;
float sp = sqrt(texelFetch2D(colortex4,ivec2(spos.xy/texelSize/4),0).w/65000.0);
float currZ = linZ(spos.z);
if( sp < currZ) {
float dist = abs(sp-currZ)/currZ;
if (abs(dist) < biasdist*0.05) return vec3(spos.xy, invLinZ(sp))/vec3(RENDER_SCALE,1.0);
}
spos += stepv;
}
return vec3(1.1);
}
vec3 RT(vec3 dir, vec3 position, float noise, float stepsizes){
float dist = 1.0 + clamp(position.z*position.z/50.0,0,2); // shrink sample size as distance increases
float stepSize = stepsizes / dist;
int maxSteps = STEPS;
vec3 clipPosition = toClipSpace3(position);
float rayLength = ((position.z + dir.z * sqrt(3.0)*far) > -sqrt(3.0)*near) ?
(-sqrt(3.0)*near -position.z) / dir.z : sqrt(3.0)*far;
vec3 end = toClipSpace3(position+dir*rayLength) ;
vec3 direction = end-clipPosition ; //convert to clip space
float len = max(abs(direction.x)/texelSize.x,abs(direction.y)/texelSize.y)/stepSize;
//get at which length the ray intersects with the edge of the screen
vec3 maxLengths = (step(0.,direction)-clipPosition) / direction;
float mult = min(min(maxLengths.x,maxLengths.y),maxLengths.z)*2000.0;
vec3 stepv = direction/len;
int iterations = min(int(min(len, mult*len)-2), maxSteps);
//Do one iteration for closest texel (good contact shadows)
vec3 spos = clipPosition*vec3(RENDER_SCALE,1.0) ;
spos.xy += TAA_Offset*texelSize*0.5*RENDER_SCALE;
spos += stepv/(stepSize/2);
float distancered = 1.0 + clamp(position.z*position.z/50.0,0,2); // shrink sample size as distance increases
for(int i = 0; i < iterations; i++){
if (spos.x < 0.0 || spos.y < 0.0 || spos.z < 0.0 || spos.x > 1.0 || spos.y > 1.0 || spos.z > 1.0) return vec3(1.1);
spos += stepv*noise;
float sp = sqrt(texelFetch2D(colortex4,ivec2(spos.xy/ texelSize/4),0).w/65000.0);
float currZ = linZ(spos.z);
if( sp < currZ) {
float dist = abs(sp-currZ)/currZ;
if (dist <= 0.1) return vec3(spos.xy, invLinZ(sp))/vec3(RENDER_SCALE,1.0);
}
}
return vec3(1.1);
}
vec3 cosineHemisphereSample(vec2 Xi, float roughness){
float r = sqrt(Xi.x);
float theta = 2.0 * 3.14159265359 * Xi.y;
2023-06-07 17:33:50 -04:00
float x = r * cos(theta);
float y = r * sin(theta);
2023-06-07 17:33:50 -04:00
return vec3(x, y, sqrt(clamp(1.0 - Xi.x,0.,1.)));
}
vec3 TangentToWorld(vec3 N, vec3 H, float roughness){
vec3 UpVector = abs(N.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(1.0, 0.0, 0.0);
vec3 T = normalize(cross(UpVector, N));
vec3 B = cross(N, T);
2023-06-07 17:33:50 -04:00
return vec3((T * H.x) + (B * H.y) + (N * H.z));
}
vec2 R2_samples(int n){
vec2 alpha = vec2(0.75487765, 0.56984026);
return fract(alpha * n);
}
void ApplySSRT(inout vec3 lighting, vec3 normal,vec2 noise,vec3 fragpos, float lightmaps, vec3 torchcolor){
int nrays = RAY_COUNT;
vec3 radiance = vec3(0.0);
vec3 occlusion = vec3(0.0);
vec3 skycontribution = vec3(0.0);
for (int i = 0; i < nrays; i++){
int seed = (frameCounter%40000)*nrays+i;
vec2 ij = fract(R2_samples(seed) + noise );
vec3 rayDir = TangentToWorld(normal, normalize(cosineHemisphereSample(ij,1.0)) ,1.0);
2023-06-07 17:33:50 -04:00
#ifdef HQ_SSGI
vec3 rayHit = rayTrace_GI( mat3(gbufferModelView) * rayDir, fragpos, blueNoise(), 50.); // ssr rt
#else
vec3 rayHit = RT(mat3(gbufferModelView)*rayDir, fragpos, blueNoise(), 30.); // choc sspt
#endif
skycontribution = lighting;
if (rayHit.z < 1.){
#if indirect_effect == 4
vec3 previousPosition = mat3(gbufferModelViewInverse) * toScreenSpace(rayHit) + gbufferModelViewInverse[3].xyz + cameraPosition-previousCameraPosition;
previousPosition = mat3(gbufferPreviousModelView) * previousPosition + gbufferPreviousModelView[3].xyz;
previousPosition.xy = projMAD(gbufferPreviousProjection, previousPosition).xy / -previousPosition.z * 0.5 + 0.5;
if (previousPosition.x > 0.0 && previousPosition.y > 0.0 && previousPosition.x < 1.0 && previousPosition.x < 1.0){
radiance += (texture2D(colortex5,previousPosition.xy).rgb + skycontribution) * GI_Strength;
}else{
radiance += skycontribution;
}
#else
radiance += skycontribution;
#endif
occlusion += skycontribution * GI_Strength;
} else {
radiance += skycontribution;
}
}
occlusion *= AO_Strength;
lighting = max(radiance/nrays - occlusion/nrays, 0.0);
}
2023-01-12 15:00:14 -05:00
void main() {
float dirtAmount = Dirt_Amount;
vec3 waterEpsilon = vec3(Water_Absorb_R, Water_Absorb_G, Water_Absorb_B);
vec3 dirtEpsilon = vec3(Dirt_Absorb_R, Dirt_Absorb_G, Dirt_Absorb_B);
vec3 totEpsilon = dirtEpsilon*dirtAmount + waterEpsilon;
vec3 scatterCoef = dirtAmount * vec3(Dirt_Scatter_R, Dirt_Scatter_G, Dirt_Scatter_B) / 3.14;
float z0 = texture2D(depthtex0,texcoord).x;
2023-01-12 15:00:14 -05:00
float z = texture2D(depthtex1,texcoord).x;
2023-01-12 15:00:14 -05:00
vec2 tempOffset=TAA_Offset;
float noise = blueNoise();
2023-01-12 15:00:14 -05:00
vec3 fragpos = toScreenSpace(vec3(texcoord-vec2(tempOffset)*texelSize*0.5,z));
vec3 p3 = mat3(gbufferModelViewInverse) * fragpos;
vec3 np3 = normVec(p3);
////// --------------- UNPACK OPAQUE GBUFFERS --------------- //////
vec4 data = texture2D(colortex1,texcoord);
vec4 dataUnpacked0 = vec4(decodeVec2(data.x),decodeVec2(data.y)); // albedo, masks
vec4 dataUnpacked1 = vec4(decodeVec2(data.z),decodeVec2(data.w)); // normals, lightmaps
// vec4 dataUnpacked2 = vec4(decodeVec2(data.z),decodeVec2(data.w));
vec3 albedo = toLinear(vec3(dataUnpacked0.xz,dataUnpacked1.x));
vec2 lightmap = dataUnpacked1.yz;
vec3 normal = decode(dataUnpacked0.yw);
////// --------------- UNPACK MISC --------------- //////
vec4 SpecularTex = texture2D(colortex8,texcoord);
2023-06-07 17:33:50 -04:00
float LabSSS = clamp((-65.0 + SpecularTex.z * 255.0) / 190.0 ,0.0,1.0);
2023-01-12 15:00:14 -05:00
vec4 normalAndAO = texture2D(colortex15,texcoord);
vec3 FlatNormals = normalAndAO.rgb * 2.0 - 1.0;
vec3 slopednormal = normal;
#ifdef POM
#ifdef Horrible_slope_normals
vec3 ApproximatedFlatNormal = normalize(cross(dFdx(p3), dFdy(p3))); // it uses depth that has POM written to it.
slopednormal = normalize(clamp(normal, ApproximatedFlatNormal*2.0 - 1.0, ApproximatedFlatNormal*2.0 + 1.0) );
#endif
#endif
2023-01-12 15:00:14 -05:00
float vanilla_AO = normalAndAO.a;
normalAndAO.a = clamp(pow(normalAndAO.a*5,4),0,1);
2023-01-12 15:00:14 -05:00
bool iswater = texture2D(colortex7,texcoord).a > 0.99;
bool lightningBolt = abs(dataUnpacked1.w-0.5) <0.01;
bool isLeaf = abs(dataUnpacked1.w-0.55) <0.01;
bool entities = abs(dataUnpacked1.w-0.45) < 0.01;
bool hand = abs(dataUnpacked1.w-0.75) < 0.01;
// bool blocklights = abs(dataUnpacked1.w-0.8) <0.01;
2023-01-12 15:00:14 -05:00
if (z >=1.0) {
vec3 color = clamp(gl_Fog.color.rgb*pow(luma(gl_Fog.color.rgb),-0.75)*0.65,0.0,1.0)*0.02;
2023-01-12 15:00:14 -05:00
gl_FragData[0].rgb = clamp(fp10Dither(color*8./3. * (1.0-rainStrength*0.4),triangularize(noise)),0.0,65000.);
2023-01-12 15:00:14 -05:00
} else {
2023-01-12 15:00:14 -05:00
p3 += gbufferModelViewInverse[3].xyz + cameraPosition;
2023-01-12 15:00:14 -05:00
// vec3 FogColor = (gl_Fog.color.rgb / pow(0.00001 + dot(gl_Fog.color.rgb,vec3(0.3333)),1.0) ) * 0.2;
// vec3 fogColor = (gl_Fog.color.rgb / max(pow(dot(gl_Fog.color.rgb,vec3(0.3333)),1.1),0.01) ) ;
// vec3 FogColor = (gl_Fog.color.rgb / max(dot(gl_Fog.color.rgb,vec3(0.3333)),0.01) );
2023-06-07 17:33:50 -04:00
vec3 AmbientLightColor = skyCloudsFromTexLOD2(normal, colortex4, 6).rgb / 10;
vec3 up = skyCloudsFromTexLOD2(vec3( 0, 1, 0), colortex4, 6).rgb / 10;
vec3 down = skyCloudsFromTexLOD2(vec3( 0,-1, 0), colortex4, 6).rgb / 10;
up *= pow( max( slopednormal.y, 0), 2);
down *= pow( max(-slopednormal.y, 0), 2);
AmbientLightColor += up + down;
// do all ambient lighting stuff
vec3 Indirect_lighting = DoAmbientLighting_Nether(AmbientLightColor, vec3(TORCH_R,TORCH_G,TORCH_B), lightmap.x, normal, np3, p3 );
#if indirect_effect == 0
vec3 AO = vec3( exp( (vanilla_AO*vanilla_AO) * -5) ) ;
if(!hand) Indirect_lighting *= AO;
#endif
#if indirect_effect == 1
vec3 AO = vec3( exp( (vanilla_AO*vanilla_AO) * -5) ) ;
if(!hand) Indirect_lighting *= ssao(fragpos,noise,FlatNormals) * AO;
#endif
// RTAO and/or SSGI
#if indirect_effect == 3 || indirect_effect == 4
if (!hand) ApplySSRT(Indirect_lighting, normal, blueNoise(gl_FragCoord.xy).rg, fragpos, lightmap.x,vec3(TORCH_R,TORCH_G,TORCH_B));
#endif
2023-06-07 17:33:50 -04:00
// finalize
gl_FragData[0].rgb = Indirect_lighting * albedo;
#ifdef Specular_Reflections
// MaterialReflections_N(gl_FragData[0].rgb, SpecularTex.r, vec3(SpecularTex.g), albedo, normal, np3, fragpos, vec3(blueNoise(gl_FragCoord.xy).rg,noise), hand);
vec3 specNoise = vec3(blueNoise(gl_FragCoord.xy).rg, interleaved_gradientNoise());
DoSpecularReflections(gl_FragData[0].rgb, fragpos, np3, vec3(0.0), specNoise, normal, SpecularTex.r, SpecularTex.g, albedo, vec3(0.0), 1.0, hand);
#endif
Emission(gl_FragData[0].rgb, albedo, SpecularTex.a);
if(lightningBolt) gl_FragData[0].rgb += vec3(77.0, 153.0, 255.0);
// gl_FragData[0].rgb = AmbientLightColor;
}
// ////// border Fog
// if(Translucent_Programs > 0.0){
// vec3 fragpos = toScreenSpace(vec3(texcoord-vec2(0.0)*texelSize*0.5,z));
// float fogdistfade = 1.0 - clamp( exp(-pow(length(fragpos / far),2.)*5.0) ,0.0,1.0);
// gl_FragData[0].rgb = mix(gl_FragData[0].rgb, gl_Fog.color.rgb*0.5*NetherFog_brightness, fogdistfade) ;
// }
2023-01-12 15:00:14 -05:00
////// Water Fog
if ((isEyeInWater == 0 && iswater) || (isEyeInWater == 1 && !iswater)){
vec3 fragpos0 = toScreenSpace(vec3(texcoord-vec2(tempOffset)*texelSize*0.5,z0));
float Vdiff = distance(fragpos,fragpos0);
if(isEyeInWater == 1) Vdiff = (length(fragpos));
float VdotU = np3.y;
float estimatedDepth = Vdiff; //assuming water plane
float estimatedSunDepth = estimatedDepth; //assuming water plane
vec3 ambientColVol = vec3(1.0,0.25,0.5) * 0.33 ;
waterVolumetrics(gl_FragData[0].rgb, fragpos0, fragpos, estimatedDepth , estimatedSunDepth, Vdiff, noise, totEpsilon, scatterCoef, ambientColVol);
}
2023-01-12 15:00:14 -05:00
2023-06-07 17:33:50 -04:00
// gl_FragData[0].rgb = SubsurfaceScattering_sky(albedo, Indirect_SSS, 1.0) * vec3(1);
2023-01-12 15:00:14 -05:00
/* DRAWBUFFERS:3 */
}