mirror of
https://github.com/X0nk/Bliss-Shader.git
synced 2025-06-22 08:42:50 +08:00
improve fog upsampler and filtered effects upsampler. improve metals in specular reflections. fix end and nether not compiling, and fix SSAO making them black. redo water shader. added water caustics strength misc setting. add 2 new post process types "xonk tonemapp" and "full reinhard". create overdraw prevention for DH shadowmap. fix SSS with dh shadowmap. tweak screenspace shadow SSS to be better in the distance. add fog behind glass. move water fog to be done in the fog behind glass pass.
This commit is contained in:
@ -66,9 +66,14 @@ uniform float frameTimeCounter;
|
||||
float blueNoise(){
|
||||
return fract(texelFetch2D(noisetex, ivec2(gl_FragCoord.xy)%512, 0).a + 1.0/1.6180339887 * frameCounter);
|
||||
}
|
||||
float interleaved_gradientNoise(){
|
||||
float interleaved_gradientNoise_temporal(){
|
||||
return fract(52.9829189*fract(0.06711056*gl_FragCoord.x + 0.00583715*gl_FragCoord.y)+frameTimeCounter*51.9521);
|
||||
}
|
||||
float interleaved_gradientNoise(){
|
||||
vec2 coord = gl_FragCoord.xy;
|
||||
float noise = fract(52.9829189*fract(0.06711056*coord.x + 0.00583715*coord.y));
|
||||
return noise;
|
||||
}
|
||||
float R2_dither(){
|
||||
vec2 coord = gl_FragCoord.xy + (frameCounter%40000) * 2.0;
|
||||
vec2 alpha = vec2(0.75487765, 0.56984026);
|
||||
@ -96,7 +101,7 @@ void main() {
|
||||
|
||||
#ifdef DH_OVERDRAW_PREVENTION
|
||||
// overdraw prevention
|
||||
if(clamp(1.0-length(pos.xyz)/max(far - 16.0,0.0),0.0,1.0) > 0.0 ){
|
||||
if(clamp(1.0-length(pos.xyz)/max(far - 32.0 * sqrt(interleaved_gradientNoise_temporal()),0.0),0.0,1.0) > 0.0 ){
|
||||
discard;
|
||||
return;
|
||||
}
|
||||
|
@ -158,25 +158,24 @@ vec3 rayTrace(vec3 dir, vec3 position,float dither, float fresnel, bool inwater)
|
||||
vec3 stepv = direction * mult / quality * vec3(RENDER_SCALE,1.0);
|
||||
|
||||
|
||||
vec3 spos = clipPosition*vec3(RENDER_SCALE,1.0) + stepv;
|
||||
vec3 spos = clipPosition*vec3(RENDER_SCALE,1.0) + stepv*dither;
|
||||
float minZ = clipPosition.z;
|
||||
float maxZ = spos.z+stepv.z*0.5;
|
||||
|
||||
spos.xy += offsets[framemod8]*texelSize*0.5/RENDER_SCALE;
|
||||
|
||||
float dist = 1.0 + clamp(position.z*position.z/50.0,0,2); // shrink sample size as distance increases
|
||||
for (int i = 0; i <= int(quality); i++) {
|
||||
|
||||
|
||||
float sp = sqrt(texelFetch2D(colortex12,ivec2(spos.xy/texelSize/4),0).a/65000.0);
|
||||
sp = DH_inv_ld(sp);
|
||||
|
||||
if(sp <= max(maxZ,minZ) && sp >= min(maxZ,minZ)) return vec3(spos.xy/RENDER_SCALE,sp);
|
||||
|
||||
|
||||
spos += stepv;
|
||||
|
||||
//small bias
|
||||
minZ = maxZ-0.00035/DH_ld(spos.z);
|
||||
minZ = maxZ-0.0000035/DH_ld(spos.z);
|
||||
|
||||
maxZ += stepv.z;
|
||||
}
|
||||
|
||||
@ -243,16 +242,14 @@ if (gl_FragCoord.x * texelSize.x < 1.0 && gl_FragCoord.y * texelSize.y < 1.0 )
|
||||
|
||||
if(iswater){
|
||||
vec3 posxz = playerPos+cameraPosition;
|
||||
posxz.xz -= posxz.y;
|
||||
|
||||
vec3 waterHeightmap = normalize(getWaveHeight(posxz.xz,1.0));
|
||||
vec3 waterHeightmap = normalize(getWaveNormal(posxz, true));
|
||||
|
||||
float bumpmult = WATER_WAVE_STRENGTH;
|
||||
waterHeightmap = waterHeightmap * vec3(bumpmult, bumpmult, bumpmult) + vec3(0.0f, 0.0f, 1.0f - bumpmult);
|
||||
waterHeightmap = normalize(waterHeightmap);
|
||||
vec2 TangentNormal = waterHeightmap.xy*0.5+0.5;
|
||||
|
||||
|
||||
// vec2 TangentNormal = waterHeightmap.xy*0.5+0.5;
|
||||
// gl_FragData[2] = vec4(encodeVec2(TangentNormal), encodeVec2(vec2(1.0)), encodeVec2(vec2(1.0)), 1.0);
|
||||
|
||||
if(normals.y > 0.0) normals = vec3(waterHeightmap.x,normals.y,waterHeightmap.y);
|
||||
@ -320,10 +317,11 @@ if (gl_FragCoord.x * texelSize.x < 1.0 && gl_FragCoord.y * texelSize.y < 1.0 )
|
||||
|
||||
float normalDotEye = dot(normals, normalize(pos.xyz));
|
||||
float fresnel = pow(clamp(1.0 + normalDotEye, 0.0, 1.0),5.0);
|
||||
fresnel = mix(0.02, 1.0, fresnel);
|
||||
|
||||
fresnel = mix(0.1, 1.0, fresnel);
|
||||
|
||||
#ifdef SNELLS_WINDOW
|
||||
// snells window looking thing
|
||||
if(isEyeInWater == 1 ) fresnel = pow(clamp(1.66 + normalDotEye,0.0,1.0), 25.0);
|
||||
if(isEyeInWater == 1) fresnel = pow(clamp(1.5 + normalDotEye,0.0,1.0), 25.0);
|
||||
#endif
|
||||
|
||||
#ifdef WATER_REFLECTIONS
|
||||
|
@ -18,6 +18,8 @@ varying vec4 color;
|
||||
flat varying vec4 lightCol;
|
||||
#endif
|
||||
|
||||
uniform int isEyeInWater;
|
||||
|
||||
uniform sampler2D texture;
|
||||
uniform sampler2D noisetex;
|
||||
uniform sampler2D colortex4;
|
||||
@ -135,6 +137,10 @@ void main() {
|
||||
|
||||
vec3 Direct_lighting = vec3(0.0);
|
||||
vec3 Indirect_lighting = vec3(0.0);
|
||||
|
||||
vec3 MinimumLightColor = vec3(0.2,0.4,1.0);
|
||||
if(isEyeInWater == 1) MinimumLightColor = vec3(10.0);
|
||||
|
||||
vec3 Torch_Color = vec3(TORCH_R,TORCH_G,TORCH_B);
|
||||
|
||||
|
||||
@ -172,7 +178,7 @@ void main() {
|
||||
Direct_lighting *= phaseg(clamp(dot(feetPlayerPos_normalized, WsunVec),0.0,1.0), 0.65)*2 + 0.5;
|
||||
#endif
|
||||
|
||||
vec3 AmbientLightColor = averageSkyCol_Clouds * 3.0;
|
||||
vec3 AmbientLightColor = (averageSkyCol_Clouds / 30.0) * 3.0;
|
||||
|
||||
#endif
|
||||
|
||||
@ -184,7 +190,7 @@ void main() {
|
||||
vec3 AmbientLightColor = vec3(1.0);
|
||||
#endif
|
||||
|
||||
Indirect_lighting = DoAmbientLightColor(AmbientLightColor, Torch_Color, clamp(lightmap.xy,0,1));
|
||||
Indirect_lighting = DoAmbientLightColor(AmbientLightColor,MinimumLightColor, Torch_Color, clamp(lightmap.xy,0,1));
|
||||
|
||||
#ifdef LINES
|
||||
gl_FragData[0].rgb = (Indirect_lighting + Direct_lighting) * toLinear(color.rgb);
|
||||
|
@ -311,9 +311,9 @@ void main() {
|
||||
vec3 fragpos = toScreenSpace(gl_FragCoord.xyz*vec3(texelSize/RENDER_SCALE,1.0)-vec3(vec2(tempOffset)*texelSize*0.5,0.0));
|
||||
vec3 worldpos = mat3(gbufferModelViewInverse) * fragpos + gbufferModelViewInverse[3].xyz + cameraPosition;
|
||||
|
||||
// #ifdef DH_OVERDRAW_PREVENTION
|
||||
// #if defined DH_OVERDRAW_PREVENTION && defined DISTANT_HORIZONS
|
||||
// // overdraw prevention
|
||||
// if(clamp(1.0-length(pos.xyz)/max(far,0.0),0.0,1.0) <= 0.0 ){
|
||||
// if(clamp(1.0-length(pos.xyz)/max(far - 16.0 * sqrt(interleaved_gradientNoise_temporal()),0.0),0.0,1.0) <= 0.0 ){
|
||||
// discard;
|
||||
// return;
|
||||
// }
|
||||
|
@ -44,7 +44,6 @@ varying vec4 normalMat;
|
||||
varying vec3 binormal;
|
||||
varying vec3 flatnormal;
|
||||
|
||||
varying vec3 viewVector;
|
||||
|
||||
|
||||
|
||||
@ -77,7 +76,6 @@ uniform vec3 nsunColor;
|
||||
#include "/lib/projections.glsl"
|
||||
#include "/lib/sky_gradient.glsl"
|
||||
#include "/lib/waterBump.glsl"
|
||||
#include "/lib/stars.glsl"
|
||||
|
||||
#ifdef OVERWORLD_SHADER
|
||||
flat varying float Flashing;
|
||||
@ -132,20 +130,29 @@ const vec2[8] offsets = vec2[8](vec2(1./8.,-3./8.),
|
||||
#define PW_DEPTH 1.0 //[0.5 1.0 1.5 2.0 2.5 3.0]
|
||||
#define PW_POINTS 1 //[2 4 6 8 16 32]
|
||||
|
||||
vec3 getParallaxDisplacement(vec3 posxz, float iswater,float bumpmult,vec3 viewVec) {
|
||||
float waveZ = mix(20.0,0.25,iswater);
|
||||
float waveM = mix(0.0,4.0,iswater);
|
||||
varying vec3 viewVector;
|
||||
vec3 getParallaxDisplacement(vec3 posxz) {
|
||||
|
||||
vec3 parallaxPos = posxz;
|
||||
vec2 vec = viewVector.xy * (1.0 / float(PW_POINTS)) * 22.0 * PW_DEPTH;
|
||||
float waterHeight = getWaterHeightmap(posxz.xz, waveM, waveZ, iswater) ;
|
||||
|
||||
vec2 vec = viewVector.xy * (1.0 / float(PW_POINTS)) * 22.0;
|
||||
float waterHeight = getWaterHeightmap(posxz.xz);
|
||||
parallaxPos.xz += waterHeight * vec;
|
||||
|
||||
return parallaxPos;
|
||||
|
||||
}
|
||||
|
||||
// vec3 getParallaxDisplacement(vec3 posxz,float bumpmult,vec3 viewVec) {
|
||||
|
||||
// vec3 parallaxPos = posxz;
|
||||
// vec2 vec = viewVector.xy * (1.0 / float(PW_POINTS)) * 22.0 * PW_DEPTH;
|
||||
// float waterHeight = getWaterHeightmap(posxz.xz) ;
|
||||
|
||||
// parallaxPos.xz += waterHeight * vec;
|
||||
|
||||
// return parallaxPos;
|
||||
|
||||
// }
|
||||
|
||||
vec3 applyBump(mat3 tbnMatrix, vec3 bump, float puddle_values){
|
||||
float bumpmult = 1;
|
||||
bump = bump * vec3(bumpmult, bumpmult, bumpmult) + vec3(0.0f, 0.0f, 1.0f - bumpmult);
|
||||
@ -258,8 +265,11 @@ vec3 rayTrace(vec3 dir, vec3 position,float dither, float fresnel, bool inwater)
|
||||
|
||||
spos += stepv;
|
||||
//small bias
|
||||
minZ = maxZ-(0.0001/dist)/ld(spos.z);
|
||||
if(inwater) minZ = maxZ-0.0004/ld(spos.z);
|
||||
if(inwater) {
|
||||
minZ = maxZ-0.000035/ld(spos.z);
|
||||
}else{
|
||||
minZ = maxZ-(0.0001/dist)/ld(spos.z);
|
||||
}
|
||||
maxZ += stepv.z;
|
||||
}
|
||||
|
||||
@ -268,7 +278,6 @@ vec3 rayTrace(vec3 dir, vec3 position,float dither, float fresnel, bool inwater)
|
||||
|
||||
vec3 GGX (vec3 n, vec3 v, vec3 l, float r, vec3 F0) {
|
||||
r = pow(r,2.5);
|
||||
// r*=r;
|
||||
|
||||
vec3 h = l + v;
|
||||
float hn = inversesqrt(dot(h, h));
|
||||
@ -278,7 +287,7 @@ vec3 GGX (vec3 n, vec3 v, vec3 l, float r, vec3 F0) {
|
||||
float dotNL = clamp(dot(n,l),0.,1.);
|
||||
float dotNHsq = dotNH*dotNH;
|
||||
|
||||
float denom = dotNHsq * r - dotNHsq + 1.;
|
||||
float denom = dotNHsq * r - dotNHsq + 1.0;
|
||||
float D = r / (3.141592653589793 * denom * denom);
|
||||
vec3 F = 0.2 + (1. - F0) * exp2((-5.55473*dotLH-6.98316)*dotLH);
|
||||
float k2 = .25 * r;
|
||||
@ -286,6 +295,7 @@ vec3 GGX (vec3 n, vec3 v, vec3 l, float r, vec3 F0) {
|
||||
return dotNL * D * F / (dotLH*dotLH*(1.0-k2)+k2);
|
||||
}
|
||||
|
||||
|
||||
uniform float dhFarPlane;
|
||||
|
||||
#include "/lib/DistantHorizons_projections.glsl"
|
||||
@ -368,14 +378,13 @@ if (gl_FragCoord.x * texelSize.x < 1.0 && gl_FragCoord.y * texelSize.y < 1.0 )
|
||||
|
||||
#ifndef HAND
|
||||
if (iswater > 0.95){
|
||||
vec3 posxz = feetPlayerPos + cameraPosition;
|
||||
|
||||
float bumpmult = WATER_WAVE_STRENGTH;
|
||||
vec3 bump = vec3(0);
|
||||
vec3 posxz = feetPlayerPos+cameraPosition;
|
||||
|
||||
posxz.xz -= posxz.y;
|
||||
posxz.xyz = getParallaxDisplacement(posxz,iswater,bumpmult,normalize(tbnMatrix*viewPos)) ;
|
||||
posxz.xyz = getParallaxDisplacement(posxz) ;
|
||||
|
||||
bump = normalize(getWaveHeight(posxz.xz,iswater));
|
||||
vec3 bump = normalize(getWaveNormal(posxz, false));
|
||||
|
||||
TangentNormal = bump.xy*0.5+0.5; // tangent space normals for refraction
|
||||
|
||||
@ -402,6 +411,8 @@ if (gl_FragCoord.x * texelSize.x < 1.0 && gl_FragCoord.y * texelSize.y < 1.0 )
|
||||
#endif
|
||||
|
||||
vec3 Indirect_lighting = vec3(0.0);
|
||||
vec3 MinimumLightColor = vec3(0.2,0.4,1.0);
|
||||
if(isEyeInWater == 1) MinimumLightColor = vec3(10.0);
|
||||
vec3 Direct_lighting = vec3(0.0);
|
||||
|
||||
#ifdef OVERWORLD_SHADER
|
||||
@ -464,25 +475,19 @@ if (gl_FragCoord.x * texelSize.x < 1.0 && gl_FragCoord.y * texelSize.y < 1.0 )
|
||||
inShadowmapBounds = true;
|
||||
}
|
||||
|
||||
// if(!inShadowmapBounds && !iswater) Shadows = min(max(lightmap.y-0.8, 0.0) * 25,1.0);
|
||||
if(!inShadowmapBounds) Shadows = 1.0;
|
||||
|
||||
Shadows *= GetCloudShadow(feetPlayerPos);
|
||||
|
||||
Direct_lighting = (lightCol.rgb/80.0) * NdotL * Shadows;
|
||||
|
||||
vec3 AmbientLightColor = averageSkyCol_Clouds;
|
||||
vec3 AmbientLightColor = averageSkyCol_Clouds/30.0;
|
||||
|
||||
vec3 ambientcoefs = WS_normal / dot(abs(WS_normal), vec3(1));
|
||||
float SkylightDir = ambientcoefs.y*1.5;
|
||||
|
||||
float skylight = max(pow(viewToWorld(flatnormal).y*0.5+0.5,0.1) + SkylightDir, 0.25);
|
||||
AmbientLightColor *= skylight;
|
||||
|
||||
// float skylight = max(pow(viewToWorld(flatnormal).y*0.5+0.5,0.1) + viewToWorld(normal).y, 0.25) * 1.35;
|
||||
// Indirect_lighting = DoAmbientLighting(averageSkyCol_Clouds, vec3(TORCH_R,TORCH_G,TORCH_B), lightmap.xy, skylight);
|
||||
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef NETHER_SHADER
|
||||
@ -515,9 +520,7 @@ if (gl_FragCoord.x * texelSize.x < 1.0 && gl_FragCoord.y * texelSize.y < 1.0 )
|
||||
AmbientLightColor *= clamp(1.5 + dot(WS_normal, normalize(feetPlayerPos))*0.5,0,2);
|
||||
|
||||
#endif
|
||||
|
||||
Indirect_lighting = DoAmbientLightColor(AmbientLightColor, vec3(TORCH_R,TORCH_G,TORCH_B), lightmap.xy);
|
||||
// Albedo = Albedo * exp2( (clamp(-dot(normal, normalize(viewPos)),0.0,1.0)) * -10.0);//pow(clamp(1.0 + dot(normal, normalize(viewPos)), 0.0, 1.0),5.0);
|
||||
Indirect_lighting = DoAmbientLightColor(AmbientLightColor, MinimumLightColor, vec3(TORCH_R,TORCH_G,TORCH_B), lightmap.xy);
|
||||
|
||||
vec3 FinalColor = (Indirect_lighting + Direct_lighting) * Albedo;
|
||||
|
||||
@ -535,7 +538,7 @@ if (gl_FragCoord.x * texelSize.x < 1.0 && gl_FragCoord.y * texelSize.y < 1.0 )
|
||||
#ifdef WATER_REFLECTIONS
|
||||
vec2 SpecularTex = texture2D(specular, lmtexcoord.xy, Texture_MipMap_Bias).rg;
|
||||
|
||||
SpecularTex = (iswater > 0.0 && iswater < 0.9) && SpecularTex.r > 0.0 && SpecularTex.g < 0.9 ? SpecularTex : vec2(1.0,0.02);
|
||||
SpecularTex = (iswater > 0.0 && iswater < 0.9) && SpecularTex.r > 0.0 && SpecularTex.g < 0.9 ? SpecularTex : vec2(1.0,0.1);
|
||||
|
||||
float roughness = max(pow(1.0-SpecularTex.r,2.0),0.05);
|
||||
float f0 = SpecularTex.g;
|
||||
@ -558,10 +561,12 @@ if (gl_FragCoord.x * texelSize.x < 1.0 && gl_FragCoord.y * texelSize.y < 1.0 )
|
||||
|
||||
#ifdef SNELLS_WINDOW
|
||||
// snells window looking thing
|
||||
if(isEyeInWater == 1 ) fresnel = pow(clamp(1.66 + normalDotEye,0.0,1.0), 25.0);
|
||||
if(isEyeInWater == 1) fresnel = pow(clamp(1.5 + normalDotEye,0.0,1.0), 25.0);
|
||||
#endif
|
||||
|
||||
fresnel = mix(f0, 1.0, fresnel);
|
||||
|
||||
// vec3 Metals = f0 > 229.5/255.0 ? max(Albedo, fresnel) : vec3(1.0);
|
||||
|
||||
|
||||
// Sun, Sky, and screen-space reflections
|
||||
@ -570,13 +575,11 @@ if (gl_FragCoord.x * texelSize.x < 1.0 && gl_FragCoord.y * texelSize.y < 1.0 )
|
||||
SunReflection = Direct_lighting * GGX(normal, -normalize(viewPos), WsunVec*mat3(gbufferModelViewInverse), roughness, vec3(f0));
|
||||
#endif
|
||||
#ifdef WATER_BACKGROUND_SPECULAR
|
||||
SkyReflection = skyCloudsFromTex(mat3(gbufferModelViewInverse) * reflectedVector, colortex4).rgb / 30.0;
|
||||
if(isEyeInWater == 1) SkyReflection = vec3(0.0);
|
||||
if(isEyeInWater == 0) SkyReflection = skyCloudsFromTex(mat3(gbufferModelViewInverse) * reflectedVector, colortex4).rgb / 30.0;
|
||||
#endif
|
||||
#else
|
||||
#ifdef WATER_BACKGROUND_SPECULAR
|
||||
SkyReflection = skyCloudsFromTexLOD2(mat3(gbufferModelViewInverse) * reflectedVector, colortex4, 0).rgb / 30.0;
|
||||
if(isEyeInWater == 1) SkyReflection = vec3(0.0);
|
||||
if(isEyeInWater == 0) SkyReflection = skyCloudsFromTexLOD2(mat3(gbufferModelViewInverse) * reflectedVector, colortex4, 0).rgb / 30.0;
|
||||
#endif
|
||||
#endif
|
||||
#ifdef SCREENSPACE_REFLECTIONS
|
||||
@ -594,6 +597,11 @@ if (gl_FragCoord.x * texelSize.x < 1.0 && gl_FragCoord.y * texelSize.y < 1.0 )
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef OVERWORLD_SHADER
|
||||
if(isEyeInWater == 1 && iswater > 0.9){
|
||||
SkyReflection.rgb = exp(-8.0 * vec3(Water_Absorb_R, Water_Absorb_G, Water_Absorb_B)) * clamp(WsunVec.y*lightCol.a,0,1) ;
|
||||
}
|
||||
#endif
|
||||
float visibilityFactor = clamp(exp2((pow(roughness,3.0) / f0) * -4),0,1);
|
||||
|
||||
#ifdef ENTITIES
|
||||
@ -606,7 +614,7 @@ if (gl_FragCoord.x * texelSize.x < 1.0 && gl_FragCoord.y * texelSize.y < 1.0 )
|
||||
Reflections_Final += SunReflection;
|
||||
|
||||
|
||||
gl_FragData[0].rgb = Reflections_Final;
|
||||
gl_FragData[0].rgb = Reflections_Final ;
|
||||
|
||||
#ifndef ENTITIES
|
||||
//correct alpha channel with fresnel
|
||||
@ -638,6 +646,6 @@ if (gl_FragCoord.x * texelSize.x < 1.0 && gl_FragCoord.y * texelSize.y < 1.0 )
|
||||
if(gl_FragCoord.x*texelSize.x < 0.47) gl_FragData[0] = vec4(0.0);
|
||||
#endif
|
||||
|
||||
gl_FragData[3].a = max(lmtexcoord.w*blueNoise()*0.05 + lmtexcoord.w,0.0);
|
||||
gl_FragData[3].a = lmtexcoord.w;
|
||||
}
|
||||
}
|
@ -78,14 +78,7 @@ vec2 tapLocation2(int sampleNumber, int nb, float jitter){
|
||||
|
||||
return vec2(cos_v, sin_v)*sqrt(alpha);
|
||||
}
|
||||
float interleaved_gradientNoise_temporal(){
|
||||
return fract(52.9829189*fract(0.06711056*gl_FragCoord.x + 0.00583715*gl_FragCoord.y)+frameTimeCounter*51.9521);
|
||||
}
|
||||
float interleaved_gradientNoise(){
|
||||
vec2 coord = gl_FragCoord.xy;
|
||||
float noise = fract(52.9829189*fract(0.06711056*coord.x + 0.00583715*coord.y));
|
||||
return noise;
|
||||
}
|
||||
|
||||
vec3 decode (vec2 encn){
|
||||
vec3 n = vec3(0.0);
|
||||
encn = encn * 2.0 - 1.0;
|
||||
@ -99,8 +92,27 @@ vec2 decodeVec2(float a){
|
||||
const float constant2 = 256. / 255.;
|
||||
return fract( a * constant1 ) * constant2 ;
|
||||
}
|
||||
|
||||
|
||||
|
||||
float interleaved_gradientNoise_temporal(){
|
||||
return fract(52.9829189*fract(0.06711056*gl_FragCoord.x + 0.00583715*gl_FragCoord.y)+frameTimeCounter*51.9521);
|
||||
}
|
||||
float interleaved_gradientNoise(){
|
||||
vec2 coord = gl_FragCoord.xy;
|
||||
float noise = fract(52.9829189*fract(0.06711056*coord.x + 0.00583715*coord.y));
|
||||
return noise;
|
||||
}
|
||||
|
||||
// float interleaved_gradientNoise(){
|
||||
// return fract(52.9829189*fract(0.06711056*gl_FragCoord.x + 0.00583715*gl_FragCoord.y)+ 1.0/1.6180339887 * frameCounter);
|
||||
// }
|
||||
float R2_dither(){
|
||||
vec2 coord = gl_FragCoord.xy + (frameCounter%40000) * 2.0;
|
||||
#ifdef TAA
|
||||
vec2 coord = gl_FragCoord.xy + (frameCounter%40000) * 2.0;
|
||||
#else
|
||||
vec2 coord = gl_FragCoord.xy;
|
||||
#endif
|
||||
vec2 alpha = vec2(0.75487765, 0.56984026);
|
||||
return fract(alpha.x * coord.x + alpha.y * coord.y ) ;
|
||||
}
|
||||
@ -339,7 +351,7 @@ void main() {
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef OVERWORLD_SHADER
|
||||
float SpecularTex = texture2D(colortex8,texcoord).z;
|
||||
float LabSSS = clamp((-64.0 + SpecularTex * 255.0) / 191.0 ,0.0,1.0);
|
||||
|
||||
@ -368,7 +380,7 @@ void main() {
|
||||
|
||||
#ifdef Variable_Penumbra_Shadows
|
||||
|
||||
if (LabSSS > 0.0 || NdotL > 0.0001) {
|
||||
if (LabSSS > -1) {
|
||||
|
||||
|
||||
vec3 feetPlayerPos = mat3(gbufferModelViewInverse) * viewPos + gbufferModelViewInverse[3].xyz;
|
||||
@ -393,7 +405,7 @@ void main() {
|
||||
|
||||
float mult = maxshadowfilt;
|
||||
float avgBlockerDepth = 0.0;
|
||||
vec2 scales = vec2(0.0, 120.0 - Max_Filter_Depth);
|
||||
vec2 scales = vec2(0.0, Max_Filter_Depth);
|
||||
float blockerCount = 0.0;
|
||||
float rdMul = distortFactor*(1.0+mult)*d0*k/shadowMapResolution;
|
||||
float diffthreshM = diffthresh*mult*d0*k/20.;
|
||||
@ -412,7 +424,11 @@ void main() {
|
||||
float b = smoothstep(weight*diffthresh/2.0, weight*diffthresh, projectedShadowPosition.z - d);
|
||||
|
||||
blockerCount += b;
|
||||
avgDepth += max(projectedShadowPosition.z - d, 0.0)*1000.;
|
||||
#ifdef DISTANT_HORIZONS_SHADOWMAP
|
||||
avgDepth += max(projectedShadowPosition.z - d, 0.0)*10000.0;
|
||||
#else
|
||||
avgDepth += max(projectedShadowPosition.z - d, 0.0)*1000.0;
|
||||
#endif
|
||||
avgBlockerDepth += d * b;
|
||||
}
|
||||
|
||||
@ -428,4 +444,5 @@ void main() {
|
||||
}
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
}
|
@ -27,7 +27,11 @@ void main() {
|
||||
WsunVec = (float(sunElevation > 1e-5)*2-1.)*normalize(mat3(gbufferModelViewInverse) * sunPosition);
|
||||
|
||||
|
||||
TAA_Offset = offsets[framemod8];
|
||||
#ifdef TAA
|
||||
TAA_Offset = offsets[framemod8];
|
||||
#else
|
||||
TAA_Offset = vec2(0.0);
|
||||
#endif
|
||||
|
||||
#ifdef TAA_UPSCALING
|
||||
gl_Position.xy = (gl_Position.xy*0.5+0.5)*RENDER_SCALE*2.0-1.0;
|
||||
|
@ -13,7 +13,6 @@ const bool colortex5MipmapEnabled = true;
|
||||
flat varying vec3 averageSkyCol_Clouds;
|
||||
flat varying vec4 lightCol;
|
||||
|
||||
uniform sampler2D colortex14;
|
||||
|
||||
#if Sun_specular_Strength != 0
|
||||
#define LIGHTSOURCE_REFLECTION
|
||||
@ -62,6 +61,8 @@ uniform sampler2D colortex9; //Specular
|
||||
uniform sampler2D colortex10;
|
||||
uniform sampler2D colortex11;
|
||||
uniform sampler2D colortex12;
|
||||
uniform sampler2D colortex13;
|
||||
uniform sampler2D colortex14;
|
||||
uniform sampler2D colortex15; // flat normals(rgb), vanillaAO(alpha)
|
||||
|
||||
|
||||
@ -86,6 +87,9 @@ uniform float farPlane;
|
||||
uniform float dhFarPlane;
|
||||
uniform float dhNearPlane;
|
||||
|
||||
flat varying vec3 zMults;
|
||||
flat varying vec3 zMults_DH;
|
||||
|
||||
uniform vec2 texelSize;
|
||||
uniform float viewWidth;
|
||||
uniform float viewHeight;
|
||||
@ -298,7 +302,6 @@ void waterVolumetrics_notoverworld(inout vec3 inColor, vec3 rayStart, vec3 rayEn
|
||||
dV *= maxZ;
|
||||
vec3 dVWorld = -mat3(gbufferModelViewInverse) * (rayEnd - rayStart) * maxZ;
|
||||
rayLength *= maxZ;
|
||||
float dY = normalize(mat3(gbufferModelViewInverse) * rayEnd).y * rayLength;
|
||||
estEndDepth *= maxZ;
|
||||
estSunDepth *= maxZ;
|
||||
vec3 absorbance = vec3(1.0);
|
||||
@ -325,42 +328,7 @@ void waterVolumetrics_notoverworld(inout vec3 inColor, vec3 rayStart, vec3 rayEn
|
||||
|
||||
#ifdef OVERWORLD_SHADER
|
||||
|
||||
float waterCaustics(vec3 wPos, vec3 lightSource) { // water waves
|
||||
|
||||
vec2 pos = wPos.xz + (lightSource.xz/lightSource.y*wPos.y);
|
||||
if(isEyeInWater==1) pos = wPos.xz - (lightSource.xz/lightSource.y*wPos.y); // fix the fucky
|
||||
vec2 movement = vec2(-0.035*frameTimeCounter);
|
||||
float caustic = 0.0;
|
||||
float weightSum = 0.0;
|
||||
float radiance = 2.39996;
|
||||
mat2 rotationMatrix = mat2(vec2(cos(radiance), -sin(radiance)), vec2(sin(radiance), cos(radiance)));
|
||||
|
||||
const vec2 wave_size[4] = vec2[](
|
||||
vec2(64.),
|
||||
vec2(32.,16.),
|
||||
vec2(16.,32.),
|
||||
vec2(48.)
|
||||
);
|
||||
|
||||
for (int i = 0; i < 4; i++){
|
||||
pos = rotationMatrix * pos;
|
||||
|
||||
vec2 speed = movement;
|
||||
float waveStrength = 1.0;
|
||||
|
||||
if( i == 0) {
|
||||
speed *= 0.15;
|
||||
waveStrength = 2.0;
|
||||
}
|
||||
|
||||
float small_wave = texture2D(noisetex, pos / wave_size[i] + speed ).b * waveStrength;
|
||||
|
||||
caustic += max( 1.0-sin( 1.0-pow( 0.5+sin( small_wave*3.0 )*0.5, 25.0) ), 0);
|
||||
|
||||
weightSum -= exp2(caustic*0.1);
|
||||
}
|
||||
return caustic / weightSum;
|
||||
}
|
||||
float fogPhase(float lightPoint){
|
||||
float linear = 1.0 - clamp(lightPoint*0.5+0.5,0.0,1.0);
|
||||
float linear2 = 1.0 - clamp(lightPoint,0.0,1.0);
|
||||
@ -370,72 +338,70 @@ float fogPhase(float lightPoint){
|
||||
|
||||
return exponential;
|
||||
}
|
||||
|
||||
void waterVolumetrics(inout vec3 inColor, vec3 rayStart, vec3 rayEnd, float estEndDepth, float estSunDepth, float rayLength, float dither, vec3 waterCoefs, vec3 scatterCoef, vec3 ambient, vec3 lightSource, float VdotL){
|
||||
inColor *= exp(-rayLength * waterCoefs); //No need to take the integrated value
|
||||
int spCount = rayMarchSampleCount;
|
||||
vec3 start = toShadowSpaceProjected(rayStart);
|
||||
vec3 end = toShadowSpaceProjected(rayEnd);
|
||||
vec3 dV = (end-start);
|
||||
//limit ray length at 32 blocks for performance and reducing integration error
|
||||
//you can't see above this anyway
|
||||
float maxZ = min(rayLength,12.0)/(1e-8+rayLength);
|
||||
dV *= maxZ;
|
||||
int spCount = rayMarchSampleCount;
|
||||
|
||||
vec3 start = toShadowSpaceProjected(rayStart);
|
||||
vec3 end = toShadowSpaceProjected(rayEnd);
|
||||
vec3 dV = (end-start);
|
||||
|
||||
rayLength *= maxZ;
|
||||
|
||||
float dY = normalize(mat3(gbufferModelViewInverse) * rayEnd).y * rayLength;
|
||||
estEndDepth *= maxZ;
|
||||
estSunDepth *= maxZ;
|
||||
//limit ray length at 32 blocks for performance and reducing integration error
|
||||
//you can't see above this anyway
|
||||
float maxZ = min(rayLength,12.0)/(1e-8+rayLength);
|
||||
dV *= maxZ;
|
||||
rayLength *= maxZ;
|
||||
estEndDepth *= maxZ;
|
||||
estSunDepth *= maxZ;
|
||||
|
||||
vec3 wpos = mat3(gbufferModelViewInverse) * rayStart + gbufferModelViewInverse[3].xyz;
|
||||
vec3 dVWorld = (wpos - gbufferModelViewInverse[3].xyz);
|
||||
|
||||
vec3 wpos = mat3(gbufferModelViewInverse) * rayStart + gbufferModelViewInverse[3].xyz;
|
||||
vec3 dVWorld = (wpos-gbufferModelViewInverse[3].xyz);
|
||||
inColor *= exp(-rayLength * waterCoefs); // No need to take the integrated value
|
||||
float phase = fogPhase(VdotL) * 5.0;
|
||||
vec3 absorbance = vec3(1.0);
|
||||
vec3 vL = vec3(0.0);
|
||||
|
||||
// float phase = (phaseg(VdotL,0.6) + phaseg(VdotL,0.8)) * 0.5;
|
||||
float phase = fogPhase(VdotL) ;
|
||||
|
||||
vec3 absorbance = vec3(1.0);
|
||||
vec3 vL = vec3(0.0);
|
||||
float expFactor = 11.0;
|
||||
for (int i=0;i<spCount;i++) {
|
||||
float d = (pow(expFactor, float(i+dither)/float(spCount))/expFactor - 1.0/expFactor)/(1-1.0/expFactor);
|
||||
float dd = pow(expFactor, float(i+dither)/float(spCount)) * log(expFactor) / float(spCount)/(expFactor-1.0);
|
||||
vec3 spPos = start.xyz + dV*d;
|
||||
|
||||
float expFactor = 11.0;
|
||||
for (int i=0;i<spCount;i++) {
|
||||
float d = (pow(expFactor, float(i+dither)/float(spCount))/expFactor - 1.0/expFactor)/(1-1.0/expFactor);
|
||||
float dd = pow(expFactor, float(i+dither)/float(spCount)) * log(expFactor) / float(spCount)/(expFactor-1.0);
|
||||
vec3 spPos = start.xyz + dV*d;
|
||||
vec3 progressW = start.xyz+cameraPosition+dVWorld;
|
||||
|
||||
vec3 progressW = start.xyz+cameraPosition+dVWorld;
|
||||
//project into biased shadowmap space
|
||||
#ifdef DISTORT_SHADOWMAP
|
||||
float distortFactor = calcDistort(spPos.xy);
|
||||
#else
|
||||
float distortFactor = 1.0;
|
||||
#endif
|
||||
|
||||
//project into biased shadowmap space
|
||||
#ifdef DISTORT_SHADOWMAP
|
||||
float distortFactor = calcDistort(spPos.xy);
|
||||
#else
|
||||
float distortFactor = 1.0;
|
||||
#endif
|
||||
|
||||
vec3 pos = vec3(spPos.xy*distortFactor, spPos.z);
|
||||
float sh = 1.0;
|
||||
if (abs(pos.x) < 1.0-0.5/2048. && abs(pos.y) < 1.0-0.5/2048){
|
||||
pos = pos*vec3(0.5,0.5,0.5/6.0)+0.5;
|
||||
sh = shadow2D( shadow, pos).x;
|
||||
}
|
||||
|
||||
#ifdef VL_CLOUDS_SHADOWS
|
||||
sh *= GetCloudShadow_VLFOG(progressW,WsunVec);
|
||||
#endif
|
||||
|
||||
vec3 sunMul = exp(-max(estSunDepth * d,0.0) * waterCoefs) * 5.0;
|
||||
vec3 ambientMul = exp(-max(estEndDepth * d,0.0) * waterCoefs );
|
||||
|
||||
vec3 Directlight = (lightSource * phase * sunMul) * sh;
|
||||
vec3 Indirectlight = ambientMul*ambient;
|
||||
|
||||
vec3 light = (Directlight + Indirectlight) * scatterCoef;
|
||||
|
||||
vL += (light - light * exp(-waterCoefs * dd * rayLength)) / waterCoefs * absorbance;
|
||||
absorbance *= exp(-dd * rayLength * waterCoefs);
|
||||
vec3 pos = vec3(spPos.xy*distortFactor, spPos.z);
|
||||
float sh = 1.0;
|
||||
if (abs(pos.x) < 1.0-0.5/2048. && abs(pos.y) < 1.0-0.5/2048){
|
||||
pos = pos*vec3(0.5,0.5,0.5/6.0)+0.5;
|
||||
sh = shadow2D( shadow, pos).x;
|
||||
}
|
||||
inColor += vL;
|
||||
|
||||
#ifdef VL_CLOUDS_SHADOWS
|
||||
sh *= GetCloudShadow_VLFOG(progressW,WsunVec);
|
||||
#endif
|
||||
|
||||
vec3 sunMul = exp(-estSunDepth * d * waterCoefs * 1.1);
|
||||
vec3 ambientMul = exp(-estEndDepth * d * waterCoefs );
|
||||
|
||||
vec3 Directlight = (lightSource * phase * sunMul) * sh;
|
||||
vec3 Indirectlight = ambient * ambientMul;
|
||||
|
||||
vec3 light = (Indirectlight + Directlight) * scatterCoef;
|
||||
|
||||
vL += (light - light * exp(-waterCoefs * dd * rayLength)) / waterCoefs * absorbance;
|
||||
absorbance *= exp(-waterCoefs * dd * rayLength);
|
||||
}
|
||||
inColor += vL;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
vec2 SSRT_Shadows(vec3 viewPos, bool depthCheck, vec3 lightDir, float noise, bool isSSS){
|
||||
@ -460,8 +426,9 @@ vec2 SSRT_Shadows(vec3 viewPos, bool depthCheck, vec3 lightDir, float noise, boo
|
||||
vec3 direction = toClipSpace3_DH(viewPos + lightDir*rayLength, depthCheck) - clipPosition; //convert to clip space
|
||||
direction.xyz = direction.xyz / max(abs(direction.x)/texelSize.x, abs(direction.y)/texelSize.y); //fixed step size
|
||||
|
||||
float Stepmult = depthCheck ? (isSSS ? 0.5 : 6.0) : (isSSS ? 1.0 : 3.0);
|
||||
|
||||
vec3 rayDir = direction * (isSSS ? 1.5 : (depthCheck ? 6.0 : 3.0)) * vec3(RENDER_SCALE,1.0);
|
||||
vec3 rayDir = direction * Stepmult * vec3(RENDER_SCALE,1.0);
|
||||
|
||||
vec3 screenPos = clipPosition * vec3(RENDER_SCALE,1.0) + rayDir*noise;
|
||||
if(isSSS) screenPos -= rayDir*0.9;
|
||||
@ -502,15 +469,15 @@ float CustomPhase(float LightPos){
|
||||
return Final;
|
||||
}
|
||||
|
||||
vec3 SubsurfaceScattering_sun(vec3 albedo, float Scattering, float Density, float lightPos, bool inShadowmapBounds){
|
||||
vec3 SubsurfaceScattering_sun(vec3 albedo, float Scattering, float Density, float lightPos){
|
||||
|
||||
float labcurve = pow(Density, LabSSS_Curve);
|
||||
|
||||
float density = 15 - labcurve*10;
|
||||
float density = 15.0 - labcurve*10.0;
|
||||
|
||||
vec3 absorbed = max(1.0 - albedo,0.0);
|
||||
|
||||
vec3 scatter = exp(absorbed * Scattering * -5) * exp(Scattering * -density);
|
||||
vec3 scatter = exp(Scattering * absorbed * -5.0) * exp(Scattering * -density);
|
||||
|
||||
scatter *= labcurve;
|
||||
|
||||
@ -521,11 +488,11 @@ vec3 SubsurfaceScattering_sun(vec3 albedo, float Scattering, float Density, floa
|
||||
|
||||
vec3 SubsurfaceScattering_sky(vec3 albedo, float Scattering, float Density){
|
||||
|
||||
vec3 absorbed = max(1.0 - albedo,0.0);
|
||||
vec3 absorbColor = max(1.0 - albedo,0.0);
|
||||
|
||||
vec3 scatter = exp((Scattering*Scattering) * absorbed * -5.0) * sqrt(1.0 - Scattering);
|
||||
vec3 scatter = vec3(1)*exp(-3.0 * (Scattering*Scattering));
|
||||
|
||||
scatter *= clamp(1 - exp(Density * -10),0,1);
|
||||
scatter *= clamp(1.0 - exp(Density * -10.0),0.0,1.0);
|
||||
|
||||
return scatter;
|
||||
}
|
||||
@ -535,42 +502,42 @@ void Emission(
|
||||
vec3 Albedo,
|
||||
float Emission
|
||||
){
|
||||
// if( Emission < 255.0/255.0 ) Lighting = mix(Lighting, Albedo * Emissive_Brightness, pow(Emission, Emissive_Curve)); // old method.... idk why
|
||||
// if( Emission < 235.0/255.0 ) Lighting = mix(Lighting, Albedo * Emissive_Brightness, pow(Emission, Emissive_Curve)); // old method.... idk why
|
||||
if( Emission < 255.0/255.0 ) Lighting += (Albedo * Emissive_Brightness) * pow(Emission, Emissive_Curve);
|
||||
}
|
||||
|
||||
#include "/lib/indirect_lighting_effects.glsl"
|
||||
#include "/lib/PhotonGTAO.glsl"
|
||||
vec4 renderInfiniteWaterPlane(
|
||||
vec3 FragPosition, inout vec3 oceanNormals
|
||||
){
|
||||
// vec4 renderInfiniteWaterPlane(
|
||||
// vec3 FragPosition, inout vec3 oceanNormals
|
||||
// ){
|
||||
|
||||
float planeHeight = 20 + 0.50;
|
||||
float total_extinction = 1.0;
|
||||
vec3 color = vec3(0.0);
|
||||
// float planeHeight = 20 + 0.50;
|
||||
// float total_extinction = 1.0;
|
||||
// vec3 color = vec3(0.0);
|
||||
|
||||
//project pixel position into projected shadowmap space
|
||||
vec4 viewPos = normalize(gbufferModelViewInverse * vec4(FragPosition,1.0) );
|
||||
vec3 dV_view = normalize(viewPos.xyz); dV_view *= 1.0/abs(dV_view.y);
|
||||
// //project pixel position into projected shadowmap space
|
||||
// vec4 viewPos = normalize(gbufferModelViewInverse * vec4(FragPosition,1.0) );
|
||||
// vec3 dV_view = normalize(viewPos.xyz); dV_view *= 1.0/abs(dV_view.y);
|
||||
|
||||
float mult = length(dV_view);
|
||||
// float mult = length(dV_view);
|
||||
|
||||
float startFlip = mix(max(cameraPosition.y - planeHeight,0.0), max(planeHeight - cameraPosition.y,0), clamp(dV_view.y,0,1));
|
||||
float signFlip = mix(-1.0, 1.0, clamp(cameraPosition.y - planeHeight,0.0,1.0));
|
||||
if(max(signFlip * normalize(dV_view).y,0.0) > 0.0) return vec4(0,0,0,1);
|
||||
// float startFlip = mix(max(cameraPosition.y - planeHeight,0.0), max(planeHeight - cameraPosition.y,0), clamp(dV_view.y,0,1));
|
||||
// float signFlip = mix(-1.0, 1.0, clamp(cameraPosition.y - planeHeight,0.0,1.0));
|
||||
// if(max(signFlip * normalize(dV_view).y,0.0) > 0.0) return vec4(0,0,0,1);
|
||||
|
||||
vec3 progress_view = vec3(0,cameraPosition.y,0) + dV_view/abs(dV_view.y) * startFlip;
|
||||
// vec3 progress_view = vec3(0,cameraPosition.y,0) + dV_view/abs(dV_view.y) * startFlip;
|
||||
|
||||
oceanNormals = normalize(getWaveHeight((progress_view+cameraPosition).xz,1));
|
||||
// oceanNormals = normalize(getWaveHeight((progress_view+cameraPosition).xz,1));
|
||||
|
||||
vec3 Lighting = vec3(1);
|
||||
float object = 1;
|
||||
// vec3 Lighting = vec3(1);
|
||||
// float object = 1;
|
||||
|
||||
color += max(Lighting - Lighting*exp(-mult*object),0.0) * total_extinction;
|
||||
total_extinction *= max(exp(-mult*object),0.0);
|
||||
// color += max(Lighting - Lighting*exp(-mult*object),0.0) * total_extinction;
|
||||
// total_extinction *= max(exp(-mult*object),0.0);
|
||||
|
||||
return vec4(color, total_extinction);
|
||||
}
|
||||
// return vec4(color, total_extinction);
|
||||
// }
|
||||
|
||||
|
||||
// uniform float viewWidth;
|
||||
@ -606,27 +573,22 @@ vec3 getViewPos() {
|
||||
return viewPos.xyz;
|
||||
}
|
||||
|
||||
vec4 BilateralUpscale(sampler2D tex, sampler2D depth, vec2 coord, float referenceDepth){
|
||||
|
||||
const ivec2 scaling = ivec2(1.0/VL_RENDER_RESOLUTION);
|
||||
ivec2 posDepth = ivec2(coord*VL_RENDER_RESOLUTION) * scaling;
|
||||
ivec2 posColor = ivec2(coord*VL_RENDER_RESOLUTION);
|
||||
|
||||
vec4 BilateralUpscale_DH(sampler2D tex, sampler2D depth, vec2 coord, float referenceDepth, bool depthCheck){
|
||||
|
||||
const ivec2 scaling = ivec2(1.0);
|
||||
ivec2 posDepth = ivec2(coord)*scaling;
|
||||
ivec2 posColor = ivec2(coord);
|
||||
|
||||
// vec2 pos = mod(coord,2)*2 - 1;
|
||||
ivec2 pos = ivec2(coord*texelSize) + 1;
|
||||
// ivec2 pos = (ivec2(gl_FragCoord.xy) % 2 )*2;
|
||||
ivec2 pos = ivec2(gl_FragCoord.xy*texelSize + 1);
|
||||
|
||||
ivec2 getRadius[4] = ivec2[](
|
||||
ivec2(-2,-2),
|
||||
ivec2(-2, 0),
|
||||
ivec2(-2,-2),
|
||||
ivec2(-2, 0),
|
||||
ivec2( 0, 0),
|
||||
ivec2( 0,-2)
|
||||
);
|
||||
|
||||
// float diffThreshold = referenceDepth;
|
||||
|
||||
float diffThreshold = 0.0002;
|
||||
|
||||
float diffThreshold = zMults.x;
|
||||
|
||||
vec4 RESULT = vec4(0.0);
|
||||
float SUM = 0.0;
|
||||
@ -635,18 +597,107 @@ vec4 BilateralUpscale_DH(sampler2D tex, sampler2D depth, vec2 coord, float refer
|
||||
|
||||
ivec2 radius = getRadius[i];
|
||||
|
||||
float offsetDepth = sqrt(texelFetch2D(depth, (posDepth + radius * scaling + pos * scaling),0).a/65000.0);
|
||||
float offsetDepth = ld(texelFetch2D(depth, posDepth + radius * scaling + pos * scaling, 0).r);
|
||||
|
||||
float EDGES = abs(offsetDepth - referenceDepth) < diffThreshold ? 1.0 : 1e-5;
|
||||
|
||||
RESULT += texelFetch2D(tex, (posColor + radius + pos),0) * EDGES;
|
||||
RESULT += texelFetch2D(tex, posColor + radius + pos, 0) * EDGES;
|
||||
|
||||
SUM += EDGES;
|
||||
}
|
||||
|
||||
// return vec4(0,0,0,1) * SUM;
|
||||
return RESULT / SUM;
|
||||
}
|
||||
|
||||
vec4 BilateralUpscale_DH(sampler2D tex, sampler2D depth, vec2 coord, float referenceDepth){
|
||||
ivec2 scaling = ivec2(1.0/VL_RENDER_RESOLUTION);
|
||||
ivec2 posDepth = ivec2(coord*VL_RENDER_RESOLUTION) * scaling;
|
||||
ivec2 posColor = ivec2(coord*VL_RENDER_RESOLUTION);
|
||||
ivec2 pos = ivec2(gl_FragCoord.xy*texelSize + 1);
|
||||
|
||||
ivec2 getRadius[4] = ivec2[](
|
||||
ivec2(-2,-2),
|
||||
ivec2(-2, 0),
|
||||
ivec2( 0, 0),
|
||||
ivec2( 0,-2)
|
||||
);
|
||||
|
||||
#ifdef DISTANT_HORIZONS
|
||||
float diffThreshold = 0.01;
|
||||
#else
|
||||
float diffThreshold = zMults.x;
|
||||
#endif
|
||||
|
||||
vec4 RESULT = vec4(0.0);
|
||||
float SUM = 0.0;
|
||||
|
||||
for (int i = 0; i < 4; i++) {
|
||||
|
||||
ivec2 radius = getRadius[i];
|
||||
|
||||
#ifdef DISTANT_HORIZONS
|
||||
float offsetDepth = sqrt(texelFetch2D(depth, posDepth + radius * scaling + pos * scaling,0).a/65000.0);
|
||||
#else
|
||||
float offsetDepth = ld(texelFetch2D(depth, posDepth + radius * scaling + pos * scaling, 0).r);
|
||||
#endif
|
||||
|
||||
float EDGES = abs(offsetDepth - referenceDepth) < diffThreshold ? 1.0 : 1e-5;
|
||||
|
||||
RESULT += texelFetch2D(tex, posColor + radius + pos, 0) * EDGES;
|
||||
|
||||
SUM += EDGES;
|
||||
}
|
||||
// return vec4(1) * SUM;
|
||||
return RESULT / SUM;
|
||||
|
||||
}
|
||||
|
||||
void BilateralUpscale_REUSE_Z(sampler2D tex1, sampler2D tex2, sampler2D depth, vec2 coord, float referenceDepth, inout vec2 ambientEffects, inout vec3 filteredShadow){
|
||||
ivec2 scaling = ivec2(1.0);
|
||||
ivec2 posDepth = ivec2(coord) * scaling;
|
||||
ivec2 posColor = ivec2(coord);
|
||||
ivec2 pos = ivec2(gl_FragCoord.xy*texelSize + 1);
|
||||
|
||||
ivec2 getRadius[4] = ivec2[](
|
||||
ivec2(-2,-2),
|
||||
ivec2(-2, 0),
|
||||
ivec2( 0, 0),
|
||||
ivec2( 0,-2)
|
||||
);
|
||||
|
||||
#ifdef DISTANT_HORIZONS
|
||||
float diffThreshold = 0.0005;
|
||||
#else
|
||||
float diffThreshold = 0.005;
|
||||
#endif
|
||||
|
||||
vec3 shadow_RESULT = vec3(0.0);
|
||||
vec2 ssao_RESULT = vec2(0.0);
|
||||
vec4 fog_RESULT = vec4(0.0);
|
||||
float SUM = 0.0;
|
||||
|
||||
for (int i = 0; i < 4; i++) {
|
||||
|
||||
ivec2 radius = getRadius[i];
|
||||
|
||||
#ifdef DISTANT_HORIZONS
|
||||
float offsetDepth = sqrt(texelFetch2D(depth, posDepth + radius * scaling + pos * scaling,0).a/65000.0);
|
||||
#else
|
||||
float offsetDepth = ld(texelFetch2D(depth, posDepth + radius * scaling + pos * scaling, 0).r);
|
||||
#endif
|
||||
|
||||
float EDGES = abs(offsetDepth - referenceDepth) < diffThreshold ? 1.0 : 1e-5;
|
||||
|
||||
shadow_RESULT += texelFetch2D(tex1, posColor + radius + pos, 0).rgb * EDGES;
|
||||
ssao_RESULT += texelFetch2D(tex2, posColor + radius + pos, 0).rg * EDGES;
|
||||
|
||||
SUM += EDGES;
|
||||
}
|
||||
|
||||
filteredShadow = shadow_RESULT/SUM;
|
||||
ambientEffects = ssao_RESULT/SUM;
|
||||
}
|
||||
|
||||
void main() {
|
||||
|
||||
vec3 DEBUG = vec3(1.0);
|
||||
@ -666,6 +717,7 @@ void main() {
|
||||
bool isDHrange = z >= 1.0;
|
||||
|
||||
#ifdef DISTANT_HORIZONS
|
||||
float DH_mixedLinearZ = sqrt(texture2D(colortex12,texcoord).a/65000.0);
|
||||
float DH_depth0 = texture2D(dhDepthTex,texcoord).x;
|
||||
float DH_depth1 = texture2D(dhDepthTex1,texcoord).x;
|
||||
|
||||
@ -716,6 +768,7 @@ void main() {
|
||||
lightmap.y = 1.0;
|
||||
#endif
|
||||
|
||||
// if(isEyeInWater == 1) lightmap.y = max(lightmap.y, 0.75);
|
||||
|
||||
////// --------------- UNPACK MISC --------------- //////
|
||||
|
||||
@ -770,13 +823,14 @@ void main() {
|
||||
scatterCoef = dirtAmount * wateralbedo / 3.14;
|
||||
}
|
||||
#endif
|
||||
|
||||
vec3 Indirect_lighting = vec3(1.0);
|
||||
vec3 Absorbtion = vec3(1.0);
|
||||
vec3 AmbientLightColor = vec3(0.0);
|
||||
vec3 MinimumLightColor = vec3(0.2,0.4,1.0);
|
||||
vec3 Indirect_lighting = vec3(0.0);
|
||||
vec3 Indirect_SSS = vec3(0.0);
|
||||
|
||||
vec3 Direct_lighting = vec3(0.0);
|
||||
vec3 DirectLightColor = vec3(0.0);
|
||||
vec3 Direct_lighting = vec3(0.0);
|
||||
vec3 Direct_SSS = vec3(0.0);
|
||||
float cloudShadow = 1.0;
|
||||
float Shadows = 1.0;
|
||||
@ -793,8 +847,8 @@ void main() {
|
||||
float LM_shadowMapFallback = min(max(lightmap.y-0.8, 0.0) * 25,1.0);
|
||||
|
||||
#ifdef OVERWORLD_SHADER
|
||||
DirectLightColor = lightCol.rgb/80.0;
|
||||
AmbientLightColor = averageSkyCol_Clouds;
|
||||
DirectLightColor = lightCol.rgb / 80.0;
|
||||
AmbientLightColor = averageSkyCol_Clouds / 30.0;
|
||||
|
||||
#ifdef PER_BIOME_ENVIRONMENT
|
||||
// BiomeSunlightColor(DirectLightColor);
|
||||
@ -806,20 +860,6 @@ void main() {
|
||||
DirectLightColor = mix(DirectLightColor, biomeDirect, maxDistance);
|
||||
#endif
|
||||
|
||||
|
||||
vec3 filteredShadow = vec3(1.412,1.0,0.0);
|
||||
|
||||
#ifdef DENOISE_SSS_AND_SSAO
|
||||
if (!hand) filteredShadow = BilateralUpscale_SSAO(colortex3, depthtex0, gl_FragCoord.xy, ld(z0)).rgb;
|
||||
#else
|
||||
if (!hand) filteredShadow = texture2D(colortex3,texcoord).rgb;
|
||||
#endif
|
||||
|
||||
float ShadowBlockerDepth = filteredShadow.y;
|
||||
|
||||
|
||||
Shadows = clamp(1.0 - filteredShadow.b,0.0,1.0);
|
||||
shadowMap = Shadows;
|
||||
bool inShadowmapBounds = false;
|
||||
#endif
|
||||
|
||||
@ -827,8 +867,28 @@ void main() {
|
||||
float heightRelativeToClouds = clamp(cameraPosition.y - LAYER0_minHEIGHT,0.0,1.0);
|
||||
vec4 Clouds = texture2D_bicubic_offset(colortex0, texcoord*CLOUDS_QUALITY, noise, RENDER_SCALE.x);
|
||||
#endif
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
/////////////////////////////////// FILTER STUFF //////////////////////////////////
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
vec3 filteredShadow = vec3(1.412,1.0,0.0);
|
||||
vec2 SSAO_SSS = vec2(1.0);
|
||||
|
||||
#ifdef DISTANT_HORIZONS
|
||||
BilateralUpscale_REUSE_Z(colortex3, colortex14, colortex12, gl_FragCoord.xy, DH_mixedLinearZ, SSAO_SSS, filteredShadow);
|
||||
#else
|
||||
BilateralUpscale_REUSE_Z(colortex3, colortex14, depthtex0, gl_FragCoord.xy, ld(z0), SSAO_SSS, filteredShadow);
|
||||
#endif
|
||||
|
||||
///////////////////////////// start drawin :D
|
||||
float ShadowBlockerDepth = filteredShadow.y;
|
||||
Shadows = clamp(1.0 - filteredShadow.b,0.0,1.0);
|
||||
shadowMap = Shadows;
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
//////////////////////////////// START DRAW ////////////////////////////////////////
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
if (swappedDepth >= 1.0) {
|
||||
#ifdef OVERWORLD_SHADER
|
||||
vec3 Background = vec3(0.0);
|
||||
@ -875,7 +935,38 @@ void main() {
|
||||
} else {
|
||||
|
||||
feetPlayerPos += gbufferModelViewInverse[3].xyz;
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
//////////////////////////////// UNDER WATER SHADING ////////////////////////////////
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
if ((isEyeInWater == 0 && iswater) || (isEyeInWater == 1 && !iswater)){
|
||||
#ifdef DISTANT_HORIZONS
|
||||
vec3 viewPos0 = toScreenSpace_DH(texcoord/RENDER_SCALE-TAA_Offset*texelSize*0.5, z0, DH_depth0);
|
||||
#else
|
||||
vec3 viewPos0 = toScreenSpace(vec3(texcoord/RENDER_SCALE-TAA_Offset*texelSize*0.5,z0));
|
||||
#endif
|
||||
|
||||
float Vdiff = distance(viewPos, viewPos0)*2.0;
|
||||
float estimatedDepth = Vdiff * abs(feetPlayerPos_normalized.y); //assuming water plane
|
||||
|
||||
// make it such that the estimated depth flips to be correct when entering water.
|
||||
if (isEyeInWater == 1){
|
||||
estimatedDepth = 40.0 * pow(max(1.0-lightmap.y,0.0),2.0);
|
||||
MinimumLightColor = vec3(10.0);
|
||||
}
|
||||
|
||||
float depthfalloff = 1.0 - clamp(exp(-0.1*estimatedDepth),0.0,1.0);
|
||||
|
||||
|
||||
float estimatedSunDepth = Vdiff; //assuming water plane
|
||||
Absorbtion = mix(exp(-2.0 * totEpsilon * estimatedDepth), exp(-8.0 * totEpsilon), depthfalloff);
|
||||
|
||||
// DirectLightColor *= Absorbtion;
|
||||
// AmbientLightColor *= Absorbtion;
|
||||
|
||||
// apply caustics to the lighting, and make sure they dont look weird
|
||||
// DirectLightColor *= mix(1.0, waterCaustics(feetPlayerPos + cameraPosition, WsunVec)*WATER_CAUSTICS_BRIGHTNESS + 0.25, clamp(estimatedDepth,0,1));
|
||||
}
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
///////////////////////////// MAJOR LIGHTSOURCE STUFF ////////////////////////
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
@ -937,7 +1028,7 @@ void main() {
|
||||
Shadows = shadowMap;
|
||||
}
|
||||
|
||||
Shadows = mix(LM_shadowMapFallback, Shadows, shadowMapFalloff);
|
||||
if(!iswater) Shadows = mix(LM_shadowMapFallback, Shadows, shadowMapFalloff);
|
||||
|
||||
#ifdef OLD_LIGHTLEAK_FIX
|
||||
if (isEyeInWater == 0) Shadows *= clamp(pow(eyeBrightnessSmooth.y/240. + lightmap.y,2.0) ,0.0,1.0); // light leak fix
|
||||
@ -949,9 +1040,12 @@ void main() {
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#if SSS_TYPE != 0
|
||||
#ifdef DISTANT_HORIZONS
|
||||
shadowMapFalloff = pow(1.0-pow(1.0-min(max(1.0 - length(vec3(feetPlayerPos.x,feetPlayerPos.y/1.5,feetPlayerPos.z)) / min(shadowDistance, max(far-32,0.0)),0.0)*5.0,1.0),2.0),2.0);
|
||||
#endif
|
||||
|
||||
#if defined DISTANT_HORIZONS_SHADOWMAP && defined Variable_Penumbra_Shadows
|
||||
float DH_SSS_DISTANCE = pow(1.0-pow(1.0-min(max(1.0 - length(vec3(feetPlayerPos.x,feetPlayerPos.y/1.5,feetPlayerPos.z)) / min(shadowDistance, far),0.0)*5.0,1.0),2.0),2.0);
|
||||
ShadowBlockerDepth = mix(pow(1.0 - Shadows,2.0), ShadowBlockerDepth, DH_SSS_DISTANCE);
|
||||
ShadowBlockerDepth = mix(pow(1.0 - Shadows,2.0), ShadowBlockerDepth, shadowMapFalloff);
|
||||
#endif
|
||||
|
||||
#if !defined Variable_Penumbra_Shadows
|
||||
@ -976,13 +1070,11 @@ void main() {
|
||||
ShadowBlockerDepth = mix(1.0, ShadowBlockerDepth, shadowMapFalloff);
|
||||
#endif
|
||||
|
||||
Direct_SSS = SubsurfaceScattering_sun(albedo, ShadowBlockerDepth, sunSSS_density, clamp(dot(feetPlayerPos_normalized, WsunVec),0.0,1.0), inShadowmapBounds);
|
||||
|
||||
Direct_SSS *= mix(LM_shadowMapFallback, 1.0, shadowMapFalloff);
|
||||
if (isEyeInWater == 0) Direct_SSS *= clamp(pow(eyeBrightnessSmooth.y/240. + lightmap.y,2.0) ,0.0,1.0); // light leak fix
|
||||
}
|
||||
|
||||
Direct_SSS = SubsurfaceScattering_sun(albedo, ShadowBlockerDepth, sunSSS_density, clamp(dot(feetPlayerPos_normalized, WsunVec),0.0,1.0));
|
||||
|
||||
// Direct_SSS *= mix(LM_shadowMapFallback, 1.0, shadowMapFalloff);
|
||||
// if (isEyeInWater == 0) Direct_SSS *= clamp(pow(eyeBrightnessSmooth.y/240. + lightmap.y,2.0) ,0.0,1.0); // light leak fix
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef CLOUDS_SHADOWS
|
||||
@ -992,8 +1084,6 @@ void main() {
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
#ifdef END_SHADER
|
||||
float vortexBounds = clamp(vortexBoundRange - length(feetPlayerPos+cameraPosition), 0.0,1.0);
|
||||
vec3 lightPos = LightSourcePosition(feetPlayerPos+cameraPosition, cameraPosition,vortexBounds);
|
||||
@ -1009,24 +1099,14 @@ void main() {
|
||||
|
||||
Direct_lighting += lightColors * endPhase * end_NdotL * fogShadow;
|
||||
AmbientLightColor += lightColors * (endPhase*endPhase) * (1.0-exp(vec3(0.6,2.0,2) * -(endPhase*0.1))) ;
|
||||
|
||||
Direct_lighting *= Absorbtion;
|
||||
#endif
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////
|
||||
///////////////////////////// INDIRECT LIGHTING /////////////////////////////
|
||||
/////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#if indirect_effect == 1
|
||||
#ifdef DENOISE_SSS_AND_SSAO
|
||||
#ifdef DISTANT_HORIZONS
|
||||
vec2 SSAO_SSS = BilateralUpscale_DH(colortex14, colortex12, gl_FragCoord.xy, sqrt(texture2D(colortex12,texcoord).a/65000.0), z >= 1.0).xy;
|
||||
#else
|
||||
vec2 SSAO_SSS = BilateralUpscale_SSAO(colortex14, depthtex0, gl_FragCoord.xy, ld(z)).xy;
|
||||
#endif
|
||||
#else
|
||||
vec2 SSAO_SSS = SSAO(viewPos, FlatNormals, hand, isLeaf, noise_2);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined OVERWORLD_SHADER && (indirect_effect == 0 || indirect_effect == 1)
|
||||
|
||||
vec3 ambientcoefs = slopednormal / dot(abs(slopednormal), vec3(1));
|
||||
@ -1040,136 +1120,106 @@ void main() {
|
||||
skylight = min(skylight, (SSAO_SSS.x*SSAO_SSS.x*SSAO_SSS.x) * 2.5);
|
||||
#endif
|
||||
|
||||
AmbientLightColor *= skylight;
|
||||
Indirect_lighting = AmbientLightColor * skylight;
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef NETHER_SHADER
|
||||
AmbientLightColor = skyCloudsFromTexLOD2(normal, colortex4, 6).rgb;
|
||||
Indirect_lighting = skyCloudsFromTexLOD2(normal, colortex4, 6).rgb;
|
||||
|
||||
vec3 up = skyCloudsFromTexLOD2(vec3( 0, 1, 0), colortex4, 6).rgb;
|
||||
vec3 down = skyCloudsFromTexLOD2(vec3( 0,-1, 0), colortex4, 6).rgb;
|
||||
|
||||
up *= pow( max( slopednormal.y, 0), 2);
|
||||
down *= pow( max(-slopednormal.y, 0), 2);
|
||||
AmbientLightColor += up + down;
|
||||
Indirect_lighting += up + down;
|
||||
|
||||
Indirect_lighting *= Absorbtion;
|
||||
#endif
|
||||
|
||||
#ifdef END_SHADER
|
||||
AmbientLightColor += vec3(0.5,0.75,1.0) * 0.9 + 0.1;
|
||||
Indirect_lighting += (vec3(0.5,0.75,1.0) * 0.9 + 0.1) * 0.1;
|
||||
|
||||
AmbientLightColor *= clamp(1.5 + dot(normal, feetPlayerPos_normalized)*0.5,0,2);
|
||||
Indirect_lighting *= clamp(1.5 + dot(normal, feetPlayerPos_normalized)*0.5,0,2);
|
||||
|
||||
Indirect_lighting *= Absorbtion;
|
||||
#endif
|
||||
|
||||
Indirect_lighting = DoAmbientLightColor(AmbientLightColor, vec3(TORCH_R,TORCH_G,TORCH_B), lightmap.xy);
|
||||
|
||||
Indirect_lighting = DoAmbientLightColor(Indirect_lighting, MinimumLightColor, vec3(TORCH_R,TORCH_G,TORCH_B), lightmap.xy);
|
||||
|
||||
#ifdef OVERWORLD_SHADER
|
||||
Indirect_lighting += LightningFlashLighting;
|
||||
#endif
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
//////////////////////////////// UNDER WATER SHADING ////////////////////////////////
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
#ifdef OVERWORLD_SHADER
|
||||
if ((isEyeInWater == 0 && iswater) || (isEyeInWater == 1 && !iswater)){
|
||||
#ifdef DISTANT_HORIZONS
|
||||
vec3 viewPos0 = toScreenSpace_DH(texcoord/RENDER_SCALE-TAA_Offset*texelSize*0.5, z0, DH_depth0);
|
||||
#else
|
||||
vec3 viewPos0 = toScreenSpace(vec3(texcoord/RENDER_SCALE-TAA_Offset*texelSize*0.5,z0));
|
||||
#endif
|
||||
|
||||
float Vdiff = distance(viewPos, viewPos0);
|
||||
float VdotU = feetPlayerPos_normalized.y;
|
||||
float estimatedDepth = Vdiff * abs(VdotU); //assuming water plane
|
||||
|
||||
// make it such that the estimated depth flips to be correct when entering water.
|
||||
if (isEyeInWater == 1) estimatedDepth = (1.0-lightmap.y)*16.0;
|
||||
|
||||
float estimatedSunDepth = Vdiff; //assuming water plane
|
||||
vec3 Absorbtion = exp2(-totEpsilon*estimatedDepth);
|
||||
|
||||
DirectLightColor *= Absorbtion;
|
||||
if(isEyeInWater == 1 ) Indirect_lighting = (Indirect_lighting/exp2(-estimatedDepth*0.5)) * Absorbtion;
|
||||
|
||||
// apply caustics to the lighting
|
||||
float Direct_caustics = waterCaustics(feetPlayerPos + cameraPosition, WsunVec);
|
||||
DirectLightColor *= 1.0 + max(pow(Direct_caustics * 3.0, 2.0),0.0);
|
||||
|
||||
// if(isEyeInWater == 0) DirectLightColor *= max(eyeBrightnessSmooth.y/240., 0.0);
|
||||
}
|
||||
#endif
|
||||
#ifdef SSS_view
|
||||
Indirect_lighting = vec3(3.0);
|
||||
#endif
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
///////////////////////////// EFFECTS FOR INDIRECT /////////////////////////////
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
float SkySSS = 0.0;
|
||||
float SkySSS = 1.0;
|
||||
vec3 AO = vec3(1.0);
|
||||
|
||||
|
||||
#if indirect_effect == 0
|
||||
vec3 AO = vec3( exp( (vanilla_AO*vanilla_AO) * -5) ) ;
|
||||
AO = vec3( exp( (vanilla_AO*vanilla_AO) * -5) ) ;
|
||||
Indirect_lighting *= AO;
|
||||
Direct_lighting *= AO;
|
||||
// Direct_lighting *= AO;
|
||||
#endif
|
||||
|
||||
#if indirect_effect == 1
|
||||
vec3 AO = vec3( exp( (vanilla_AO*vanilla_AO) * -3) );
|
||||
AO = vec3( exp( (vanilla_AO*vanilla_AO) * -3) );
|
||||
|
||||
AO *= SSAO_SSS.x*SSAO_SSS.x*SSAO_SSS.x;
|
||||
AO *= SSAO_SSS.x*SSAO_SSS.x*SSAO_SSS.x;//*SSAO_SSS.x*SSAO_SSS.x*SSAO_SSS.x;
|
||||
// AO *= exp((1-SSAO_SSS.x) * -10);
|
||||
|
||||
SkySSS = SSAO_SSS.y;
|
||||
|
||||
Indirect_lighting *= AO;
|
||||
Direct_lighting *= AO;
|
||||
#endif
|
||||
|
||||
// GTAO
|
||||
#if indirect_effect == 2
|
||||
vec3 AO = vec3( exp( (vanilla_AO*vanilla_AO) * -3) );
|
||||
AO = vec3( exp( (vanilla_AO*vanilla_AO) * -3) );
|
||||
|
||||
vec2 r2 = fract(R2_samples((frameCounter%40000) + frameCounter*2) + bnoise);
|
||||
if (!hand) AO = ambient_occlusion(vec3(texcoord/RENDER_SCALE-TAA_Offset*texelSize*0.5,z), viewPos, worldToView(slopednormal), r2) * vec3(1.0);
|
||||
|
||||
Indirect_lighting *= AO;
|
||||
Direct_lighting *= AO;
|
||||
#endif
|
||||
|
||||
// RTAO and/or SSGI
|
||||
#if indirect_effect == 3 || indirect_effect == 4
|
||||
if (!hand) ApplySSRT(Indirect_lighting, viewPos, normal, vec3(bnoise, noise_2), lightmap.xy, AmbientLightColor, vec3(TORCH_R,TORCH_G,TORCH_B), isGrass);
|
||||
#endif
|
||||
|
||||
#ifdef SSS_view
|
||||
// albedo = vec3(1);
|
||||
Indirect_lighting = vec3(0.5);
|
||||
|
||||
#if defined END_SHADER
|
||||
Direct_lighting *= AO;
|
||||
#endif
|
||||
|
||||
//////////////////////////////// SKY SSS ////////////////////////////////
|
||||
#if defined Ambient_SSS && defined OVERWORLD_SHADER
|
||||
|
||||
///////////////////////////// SKY SSS /////////////////////////////
|
||||
|
||||
#if defined Ambient_SSS && defined OVERWORLD_SHADER && indirect_effect == 1
|
||||
if (!hand){
|
||||
|
||||
#if indirect_effect != 1
|
||||
SkySSS = ScreenSpace_SSS(viewPos, FlatNormals, hand, isLeaf, noise);
|
||||
#endif
|
||||
|
||||
vec3 ambientColor = (averageSkyCol_Clouds / 12.0) * ambient_brightness; // divide by 12 to match the brightest part of ambient light facing up
|
||||
float skylightmap = pow(lightmap.y,3);
|
||||
vec3 ambientColor = AmbientLightColor * 2.5 * ambient_brightness; // x2.5 to match the brightness of upfacing skylight
|
||||
float skylightmap = pow(lightmap.y, 3.0);
|
||||
|
||||
Indirect_SSS = SubsurfaceScattering_sky(albedo, SkySSS, LabSSS);
|
||||
Indirect_SSS *= ambientColor;
|
||||
Indirect_SSS *= skylightmap;
|
||||
|
||||
vec3 SSS_forSky = vec3((1.0 - SkySSS) * LabSSS);
|
||||
SSS_forSky *= ambientColor;
|
||||
SSS_forSky *= skylightmap;
|
||||
|
||||
//light up dark parts so its more visible
|
||||
Indirect_lighting = max(Indirect_lighting, SSS_forSky * ambientsss_brightness);
|
||||
Indirect_SSS *= AO;
|
||||
|
||||
// apply to ambient light.
|
||||
Indirect_lighting = max(Indirect_lighting, Indirect_SSS * ambientsss_brightness);
|
||||
|
||||
Indirect_lighting = max(Indirect_lighting, Indirect_SSS * ambientsss_brightness );
|
||||
|
||||
#ifdef OVERWORLD_SHADER
|
||||
if(LabSSS > 0.0) Indirect_lighting += (1.0-SkySSS) * LightningPhase * lightningEffect * pow(lightmap.y,10);
|
||||
#endif
|
||||
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////
|
||||
///////////////////////////// FINALIZE /////////////////////////////
|
||||
@ -1180,7 +1230,6 @@ void main() {
|
||||
|
||||
#ifdef OVERWORLD_SHADER
|
||||
// do these here so it gets underwater absorbtion.
|
||||
// Direct_lighting = max(DirectLightColor * NdotL * Shadows, DirectLightColor * LabSSS*0);
|
||||
Direct_lighting = max(DirectLightColor * NdotL * Shadows, DirectLightColor * Direct_SSS);
|
||||
#endif
|
||||
|
||||
@ -1197,52 +1246,15 @@ void main() {
|
||||
|
||||
}
|
||||
|
||||
#ifdef DISTANT_HORIZONS
|
||||
vec4 vlBehingTranslucents = BilateralUpscale_DH(colortex13, colortex12, gl_FragCoord.xy, sqrt(texture2D(colortex12,texcoord).a/65000.0));
|
||||
#else
|
||||
vec4 vlBehingTranslucents = BilateralUpscale(colortex13, depthtex1, gl_FragCoord.xy, ld(z));
|
||||
#endif
|
||||
|
||||
gl_FragData[0].rgb = gl_FragData[0].rgb * vlBehingTranslucents.a + vlBehingTranslucents.rgb;
|
||||
|
||||
|
||||
|
||||
|
||||
#ifdef OVERWORLD_SHADER
|
||||
if (iswater && isEyeInWater == 0){
|
||||
|
||||
#ifdef DISTANT_HORIZONS
|
||||
vec3 viewPos0 = toScreenSpace_DH(texcoord/RENDER_SCALE-TAA_Offset*texelSize*0.5, z0, DH_depth0);
|
||||
#else
|
||||
vec3 viewPos0 = toScreenSpace(vec3(texcoord/RENDER_SCALE-TAA_Offset*texelSize*0.5,z0));
|
||||
#endif
|
||||
|
||||
float Vdiff = distance(viewPos, viewPos0);
|
||||
float VdotU = feetPlayerPos_normalized.y;
|
||||
float estimatedDepth = Vdiff * abs(VdotU) ; //assuming water plane
|
||||
float estimatedSunDepth = estimatedDepth/abs(WsunVec.y); //assuming water plane
|
||||
|
||||
float custom_lightmap_T = clamp(pow(texture2D(colortex14, texcoord).a,3.0),0.0,1.0);
|
||||
|
||||
#ifdef DISTANT_HORIZONS
|
||||
if(isDHrange) custom_lightmap_T = 0.85;
|
||||
#endif
|
||||
|
||||
vec3 lightColVol = lightCol.rgb / 80.;
|
||||
|
||||
|
||||
vec3 lightningColor = (lightningEffect / 3) * (max(eyeBrightnessSmooth.y,0)/240.);
|
||||
vec3 ambientColVol = max((averageSkyCol_Clouds / 30.0) * custom_lightmap_T , vec3(0.2,0.4,1.0) * (MIN_LIGHT_AMOUNT*0.01 + nightVision)) ;
|
||||
|
||||
waterVolumetrics(gl_FragData[0].rgb, viewPos0, viewPos, estimatedDepth, estimatedSunDepth, Vdiff, noise_2, totEpsilon, scatterCoef, ambientColVol, lightColVol, dot(feetPlayerPos_normalized, WsunVec));
|
||||
}
|
||||
#else
|
||||
if (iswater && isEyeInWater == 0){
|
||||
vec3 viewPos0 = toScreenSpace(vec3(texcoord/RENDER_SCALE-TAA_Offset*texelSize*0.5,z0));
|
||||
float Vdiff = distance(viewPos,viewPos0);
|
||||
float VdotU = feetPlayerPos_normalized.y;
|
||||
float estimatedDepth = Vdiff * abs(VdotU) ; //assuming water plane
|
||||
|
||||
vec3 ambientColVol = max(vec3(1.0,0.5,1.0) * 0.3, vec3(0.2,0.4,1.0) * (MIN_LIGHT_AMOUNT*0.01 + nightVision));
|
||||
|
||||
waterVolumetrics_notoverworld(gl_FragData[0].rgb, viewPos0, viewPos, estimatedDepth , estimatedDepth, Vdiff, noise_2, totEpsilon, scatterCoef, ambientColVol);
|
||||
}
|
||||
#endif
|
||||
|
||||
// gl_FragData[0].rgb = vec3(1) * (abs(ld(texture2D(depthtex0,texcoord + vec2(0.001,0)).r) - ld(z0)) < (1.0/(far * near))*0.1 ? 1.0 : 1e-5 );
|
||||
|
||||
//////// DEBUG VIEW STUFF
|
||||
#if DEBUG_VIEW == debug_SHADOWMAP
|
||||
@ -1251,7 +1263,7 @@ void main() {
|
||||
gl_FragData[0].rgb = mix(vec3(0.1) * (normal.y * 0.1 +0.9), Normal_Shadowmap, shadowMap);
|
||||
#endif
|
||||
#if DEBUG_VIEW == debug_NORMALS
|
||||
gl_FragData[0].rgb = normal;
|
||||
gl_FragData[0].rgb = FlatNormals;
|
||||
#endif
|
||||
#if DEBUG_VIEW == debug_SPECULAR
|
||||
gl_FragData[0].rgb = SpecularTex.rgb;
|
||||
@ -1266,6 +1278,13 @@ void main() {
|
||||
gl_FragData[0].rgb = viewPos * 0.001;
|
||||
#endif
|
||||
|
||||
// #if DEBUG_VIEW == debug_FILTERED_STUFF
|
||||
// vec3 FilteredDebug = vec3(15.0) * exp(-1.0 * vec3(1.0,0.5,1.0) * filteredShadow.y);
|
||||
// FilteredDebug += vec3(15.0) * exp(-7.0 * vec3(1.0,1.0,0.5) * pow(SSAO_SSS.x,2));
|
||||
// FilteredDebug += vec3(15.0) * exp(-7.0 * vec3(0.5,1.0,1.0) * pow(SSAO_SSS.y,2));
|
||||
// gl_FragData[0].rgb = FilteredDebug;
|
||||
// #endif
|
||||
|
||||
#ifdef CLOUDS_INFRONT_OF_WORLD
|
||||
gl_FragData[1] = texture2D(colortex2, texcoord);
|
||||
if(heightRelativeToClouds > 0.0 && !hand){
|
||||
|
@ -9,10 +9,14 @@ flat varying vec4 lightCol;
|
||||
|
||||
flat varying vec2 TAA_Offset;
|
||||
flat varying vec3 zMults;
|
||||
flat varying vec3 zMults_DH;
|
||||
uniform sampler2D colortex4;
|
||||
|
||||
// uniform float far;
|
||||
uniform float near;
|
||||
uniform float dhFarPlane;
|
||||
uniform float dhNearPlane;
|
||||
|
||||
uniform mat4 gbufferModelViewInverse;
|
||||
uniform vec3 sunPosition;
|
||||
uniform float rainStrength;
|
||||
@ -39,7 +43,8 @@ void main() {
|
||||
|
||||
Flashing = texelFetch2D(colortex4,ivec2(1,1),0).x/150.0;
|
||||
|
||||
zMults = vec3((far * near)*2.0,far+near,far-near);
|
||||
zMults = vec3(1.0/(far * near),far+near,far-near);
|
||||
zMults_DH = vec3(1.0/(dhFarPlane * dhNearPlane),dhFarPlane+dhNearPlane,dhFarPlane-dhNearPlane);
|
||||
|
||||
lightCol.rgb = texelFetch2D(colortex4,ivec2(6,37),0).rgb;
|
||||
lightCol.a = float(sunElevation > 1e-5)*2.0 - 1.0;
|
||||
@ -50,7 +55,11 @@ void main() {
|
||||
// WsunVec = normalize(LightDir);
|
||||
|
||||
|
||||
TAA_Offset = offsets[framemod8];
|
||||
#ifdef TAA
|
||||
TAA_Offset = offsets[framemod8];
|
||||
#else
|
||||
TAA_Offset = vec2(0.0);
|
||||
#endif
|
||||
|
||||
#ifdef TAA_UPSCALING
|
||||
gl_Position.xy = (gl_Position.xy*0.5+0.5)*RENDER_SCALE*2.0-1.0;
|
||||
|
@ -95,6 +95,22 @@ vec3 getViewPos() {
|
||||
return viewPos.xyz;
|
||||
}
|
||||
|
||||
vec3 ACESFilm2(vec3 x){
|
||||
// float a = 2.51f;
|
||||
// float b = 0.03f;
|
||||
// float c = 2.43f;
|
||||
// float d = 0.59f;
|
||||
// float e = 0.14f;
|
||||
|
||||
float a = 2.51f; // brightests
|
||||
float b = 0.53f; // lower midtones
|
||||
float c = 2.43f; // upper midtones
|
||||
float d = 0.59f; // upper midtones
|
||||
float e = 0.54f; // lowest tones
|
||||
return clamp((x*(a*x+b))/(x*(c*x+d)+e),0.0,1.0);
|
||||
}
|
||||
|
||||
|
||||
#define linear_to_srgb(x) (pow(x, vec3(1.0/2.2)))
|
||||
void main() {
|
||||
/* DRAWBUFFERS:7 */
|
||||
|
@ -2,16 +2,19 @@
|
||||
|
||||
flat varying vec4 lightCol;
|
||||
flat varying vec3 averageSkyCol;
|
||||
// flat varying vec3 averageSkyCol_Clouds;
|
||||
flat varying vec3 averageSkyCol_Clouds;
|
||||
|
||||
uniform sampler2D noisetex;
|
||||
uniform sampler2D depthtex0;
|
||||
uniform sampler2D depthtex1;
|
||||
uniform sampler2D dhDepthTex;
|
||||
uniform sampler2D dhDepthTex1;
|
||||
|
||||
uniform sampler2D colortex2;
|
||||
uniform sampler2D colortex3;
|
||||
// uniform sampler2D colortex4;
|
||||
uniform sampler2D colortex6;
|
||||
uniform sampler2D colortex7;
|
||||
|
||||
flat varying vec3 WsunVec;
|
||||
uniform vec3 sunVec;
|
||||
@ -43,6 +46,7 @@ uniform float eyeAltitude;
|
||||
#include "/lib/res_params.glsl"
|
||||
#include "/lib/sky_gradient.glsl"
|
||||
#include "/lib/Shadow_Params.glsl"
|
||||
#include "/lib/waterBump.glsl"
|
||||
|
||||
#include "/lib/DistantHorizons_projections.glsl"
|
||||
|
||||
@ -80,17 +84,31 @@ float linearizeDepthFast(const in float depth, const in float near, const in flo
|
||||
|
||||
#define fsign(a) (clamp((a)*1e35,0.,1.)*2.-1.)
|
||||
|
||||
float interleaved_gradientNoise(){
|
||||
return fract(52.9829189*fract(0.06711056*gl_FragCoord.x + 0.00583715*gl_FragCoord.y)+ 1.0/1.6180339887 * frameCounter);
|
||||
float interleaved_gradientNoise_temporal(){
|
||||
return fract(52.9829189*fract(0.06711056*gl_FragCoord.x + 0.00583715*gl_FragCoord.y)+frameTimeCounter*51.9521);
|
||||
}
|
||||
float interleaved_gradientNoise(){
|
||||
vec2 coord = gl_FragCoord.xy;
|
||||
float noise = fract(52.9829189*fract(0.06711056*coord.x + 0.00583715*coord.y));
|
||||
return noise;
|
||||
}
|
||||
|
||||
// float interleaved_gradientNoise(){
|
||||
// return fract(52.9829189*fract(0.06711056*gl_FragCoord.x + 0.00583715*gl_FragCoord.y)+ 1.0/1.6180339887 * frameCounter);
|
||||
// }
|
||||
float blueNoise(){
|
||||
return fract(texelFetch2D(noisetex, ivec2(gl_FragCoord.xy)%512, 0).a+ 1.0/1.6180339887 * frameCounter );
|
||||
}
|
||||
float R2_dither(){
|
||||
vec2 coord = gl_FragCoord.xy + (frameCounter%40000) * 2.0;
|
||||
#ifdef TAA
|
||||
vec2 coord = gl_FragCoord.xy + (frameCounter%40000) * 2.0;
|
||||
#else
|
||||
vec2 coord = gl_FragCoord.xy;
|
||||
#endif
|
||||
vec2 alpha = vec2(0.75487765, 0.56984026);
|
||||
return fract(alpha.x * coord.x + alpha.y * coord.y ) ;
|
||||
}
|
||||
|
||||
void waterVolumetrics_notoverworld(inout vec3 inColor, vec3 rayStart, vec3 rayEnd, float estEndDepth, float estSunDepth, float rayLength, float dither, vec3 waterCoefs, vec3 scatterCoef, vec3 ambient){
|
||||
inColor *= exp(-rayLength * waterCoefs); //No need to take the integrated value
|
||||
|
||||
@ -136,44 +154,73 @@ void waterVolumetrics_notoverworld(inout vec3 inColor, vec3 rayStart, vec3 rayEn
|
||||
|
||||
}
|
||||
|
||||
#ifdef OVERWORLD_SHADER
|
||||
float waterCaustics(vec3 wPos, vec3 lightSource) { // water waves
|
||||
// #ifdef OVERWORLD_SHADER
|
||||
// vec4 waterVolumetrics_test( vec3 rayStart, vec3 rayEnd, float estEndDepth, float estSunDepth, float rayLength, float dither, vec3 waterCoefs, vec3 scatterCoef, vec3 ambient, vec3 lightSource, float VdotL){
|
||||
// int spCount = rayMarchSampleCount;
|
||||
|
||||
vec2 pos = wPos.xz + (lightSource.xz/lightSource.y*wPos.y);
|
||||
if(isEyeInWater==1) pos = wPos.xz - (lightSource.xz/lightSource.y*wPos.y); // fix the fucky
|
||||
vec2 movement = vec2(-0.035*frameTimeCounter);
|
||||
float caustic = 0.0;
|
||||
float weightSum = 0.0;
|
||||
float radiance = 2.39996;
|
||||
mat2 rotationMatrix = mat2(vec2(cos(radiance), -sin(radiance)), vec2(sin(radiance), cos(radiance)));
|
||||
// vec3 start = toShadowSpaceProjected(rayStart);
|
||||
// vec3 end = toShadowSpaceProjected(rayEnd);
|
||||
// vec3 dV = (end-start);
|
||||
|
||||
const vec2 wave_size[4] = vec2[](
|
||||
vec2(64.),
|
||||
vec2(32.,16.),
|
||||
vec2(16.,32.),
|
||||
vec2(48.)
|
||||
);
|
||||
// //limit ray length at 32 blocks for performance and reducing integration error
|
||||
// //you can't see above this anyway
|
||||
// float maxZ = min(rayLength,12.0)/(1e-8+rayLength);
|
||||
// dV *= maxZ;
|
||||
// rayLength *= maxZ;
|
||||
// estEndDepth *= maxZ;
|
||||
// estSunDepth *= maxZ;
|
||||
|
||||
// vec3 wpos = mat3(gbufferModelViewInverse) * rayStart + gbufferModelViewInverse[3].xyz;
|
||||
// vec3 dVWorld = (wpos - gbufferModelViewInverse[3].xyz);
|
||||
|
||||
for (int i = 0; i < 4; i++){
|
||||
pos = rotationMatrix * pos;
|
||||
// vec3 newabsorbance = exp(-rayLength * waterCoefs); // No need to take the integrated value
|
||||
|
||||
// float phase = fogPhase(VdotL) * 5.0;
|
||||
// vec3 absorbance = vec3(1.0);
|
||||
// vec3 vL = vec3(0.0);
|
||||
|
||||
vec2 speed = movement;
|
||||
float waveStrength = 1.0;
|
||||
|
||||
if( i == 0) {
|
||||
speed *= 0.15;
|
||||
waveStrength = 2.0;
|
||||
}
|
||||
|
||||
float small_wave = texture2D(noisetex, pos / wave_size[i] + speed ).b * waveStrength;
|
||||
// float expFactor = 11.0;
|
||||
// for (int i=0;i<spCount;i++) {
|
||||
// float d = (pow(expFactor, float(i+dither)/float(spCount))/expFactor - 1.0/expFactor)/(1-1.0/expFactor);
|
||||
// float dd = pow(expFactor, float(i+dither)/float(spCount)) * log(expFactor) / float(spCount)/(expFactor-1.0);
|
||||
// vec3 spPos = start.xyz + dV*d;
|
||||
|
||||
caustic += max( 1.0-sin( 1.0-pow( 0.5+sin( small_wave*3.0 )*0.5, 25.0) ), 0);
|
||||
// vec3 progressW = start.xyz+cameraPosition+dVWorld;
|
||||
|
||||
weightSum -= exp2(caustic*0.1);
|
||||
}
|
||||
return caustic / weightSum;
|
||||
}
|
||||
// //project into biased shadowmap space
|
||||
// #ifdef DISTORT_SHADOWMAP
|
||||
// float distortFactor = calcDistort(spPos.xy);
|
||||
// #else
|
||||
// float distortFactor = 1.0;
|
||||
// #endif
|
||||
|
||||
// vec3 pos = vec3(spPos.xy*distortFactor, spPos.z);
|
||||
// float sh = 1.0;
|
||||
// if (abs(pos.x) < 1.0-0.5/2048. && abs(pos.y) < 1.0-0.5/2048){
|
||||
// pos = pos*vec3(0.5,0.5,0.5/6.0)+0.5;
|
||||
// sh = shadow2D( shadow, pos).x;
|
||||
// }
|
||||
|
||||
// #ifdef VL_CLOUDS_SHADOWS
|
||||
// sh *= GetCloudShadow_VLFOG(progressW,WsunVec);
|
||||
// #endif
|
||||
|
||||
// vec3 sunMul = exp(-estSunDepth * d * waterCoefs * 1.1);
|
||||
// vec3 ambientMul = exp(-estEndDepth * d * waterCoefs );
|
||||
|
||||
// vec3 Directlight = (lightSource * phase * sunMul) * sh;
|
||||
// // vec3 Indirectlight = ambient * ambientMul;
|
||||
// vec3 Indirectlight = max(ambient * ambientMul, vec3(0.01,0.2,0.4) * ambientMul * 0.1) ;
|
||||
|
||||
// vec3 light = (Indirectlight + Directlight) * scatterCoef;
|
||||
|
||||
// vL += (light - light * exp(-waterCoefs * dd * rayLength)) / waterCoefs * absorbance;
|
||||
// absorbance *= exp(-waterCoefs * dd * rayLength);
|
||||
// }
|
||||
// // inColor += vL;
|
||||
// return vec4( vL, dot(newabsorbance,vec3(0.335)));
|
||||
// }
|
||||
|
||||
|
||||
void waterVolumetrics(inout vec3 inColor, vec3 rayStart, vec3 rayEnd, float estEyeDepth, float estSunDepth, float rayLength, float dither, vec3 waterCoefs, vec3 scatterCoef, vec3 ambient, vec3 lightSource, float VdotL){
|
||||
@ -192,61 +239,74 @@ void waterVolumetrics(inout vec3 inColor, vec3 rayStart, vec3 rayEnd, float estE
|
||||
float dY = normalize(mat3(gbufferModelViewInverse) * rayEnd).y * rayLength;
|
||||
|
||||
vec3 progressW = gbufferModelViewInverse[3].xyz+cameraPosition;
|
||||
// vec3 WsunVec = mat3(gbufferModelViewInverse) * sunVec * lightCol.a;
|
||||
|
||||
// float phase = (phaseg(VdotL,0.6) + phaseg(VdotL,0.8)) * 0.5;
|
||||
float phase = fogPhase(VdotL) ;
|
||||
#ifdef OVERWORLD_SHADER
|
||||
float phase = fogPhase(VdotL) * 5.0;
|
||||
#endif
|
||||
|
||||
vec3 absorbance = vec3(1.0);
|
||||
vec3 vL = vec3(0.0);
|
||||
float expFactor = 11.0;
|
||||
|
||||
float YFade = pow(normalize(dVWorld).y*0.3+0.7,1.5);
|
||||
|
||||
#ifdef OVERWORLD_SHADER
|
||||
float lowlightlevel = clamp(eyeBrightnessSmooth.y/240.0,0.1,1.0);
|
||||
#else
|
||||
float lowlightlevel = 1.0;
|
||||
#endif
|
||||
// lowlightlevel = pow(lowlightlevel,0.5);
|
||||
|
||||
float expFactor = 11.0;
|
||||
for (int i=0;i<spCount;i++) {
|
||||
float d = (pow(expFactor, float(i+dither)/float(spCount))/expFactor - 1.0/expFactor)/(1-1.0/expFactor); // exponential step position (0-1)
|
||||
float dd = pow(expFactor, float(i+dither)/float(spCount)) * log(expFactor) / float(spCount)/(expFactor-1.0); //step length (derivative)
|
||||
vec3 spPos = start.xyz + dV*d;
|
||||
|
||||
progressW = gbufferModelViewInverse[3].xyz+cameraPosition + d*dVWorld;
|
||||
//project into biased shadowmap space
|
||||
#ifdef DISTORT_SHADOWMAP
|
||||
float distortFactor = calcDistort(spPos.xy);
|
||||
#else
|
||||
float distortFactor = 1.0;
|
||||
#endif
|
||||
vec3 pos = vec3(spPos.xy*distortFactor, spPos.z);
|
||||
|
||||
|
||||
float sh = 1.0;
|
||||
if (abs(pos.x) < 1.0-0.5/2048. && abs(pos.y) < 1.0-0.5/2048){
|
||||
pos = pos*vec3(0.5,0.5,0.5/6.0)+0.5;
|
||||
sh = shadow2D( shadow, pos).x;
|
||||
}
|
||||
#ifdef OVERWORLD_SHADER
|
||||
vec3 spPos = start.xyz + dV*d;
|
||||
|
||||
sh *= GetCloudShadow_VLFOG(progressW, WsunVec);
|
||||
//project into biased shadowmap space
|
||||
#ifdef DISTORT_SHADOWMAP
|
||||
float distortFactor = calcDistort(spPos.xy);
|
||||
#else
|
||||
float distortFactor = 1.0;
|
||||
#endif
|
||||
vec3 pos = vec3(spPos.xy*distortFactor, spPos.z);
|
||||
if (abs(pos.x) < 1.0-0.5/2048. && abs(pos.y) < 1.0-0.5/2048){
|
||||
pos = pos*vec3(0.5,0.5,0.5/6.0)+0.5;
|
||||
sh = shadow2D( shadow, pos).x;
|
||||
}
|
||||
|
||||
#ifdef VL_CLOUDS_SHADOWS
|
||||
sh *= GetCloudShadow_VLFOG(progressW,WsunVec);
|
||||
#endif
|
||||
|
||||
|
||||
vec3 sunMul = exp(-max((estSunDepth - dY * d) ,0.0)/abs(refractedSunVec.y) * waterCoefs);
|
||||
vec3 ambientMul = exp(-max(estEyeDepth - dY * d,0.0) * waterCoefs) * 2.0 ;
|
||||
// float bubble = 1.0 - pow(1.0-pow(1.0-min(max(1.0 - length(d*dVWorld) / (16),0.0)*5.0,1.0),2.0),2.0);
|
||||
float bubble = exp( -7.0 * clamp(1.0 - length(d*dVWorld) / 16.0, 0.0,1.0) );
|
||||
float bubble2 = max(pow(length(d*dVWorld)/24,5)*100.0,0.0) + 1;
|
||||
|
||||
float np3_Y = normalize(mat3(gbufferModelViewInverse) * rayEnd).y;
|
||||
float ambfogfade = clamp(exp(np3_Y*1.5 - 1.5),0.0,1.0) ;
|
||||
float sunCaustics = (waterCaustics(progressW, WsunVec)) * mix(0.25,10.0,bubble) + 0.75;
|
||||
|
||||
float sunCaustics = clamp(pow(waterCaustics(progressW, WsunVec)+1,5) * 2.0, phase*0.8+0.2, 1.0);
|
||||
vec3 sunMul = exp(-1 * d * waterCoefs * 1.1);
|
||||
vec3 Directlight = (lightSource * phase * sunMul * sunCaustics) * sh * lowlightlevel * pow(abs(WsunVec.y),1);
|
||||
#else
|
||||
vec3 Directlight = vec3(0.0);
|
||||
#endif
|
||||
|
||||
vec3 ambientMul = exp(-1 * d * waterCoefs);
|
||||
vec3 Indirectlight = ambient * ambientMul * YFade * lowlightlevel;
|
||||
|
||||
// make it such that the volume is brighter farther away from the camera.
|
||||
float bubbleOfClearness = max(pow(length(d*dVWorld)/16,5)*100.0,0.0) + 1;
|
||||
float bubbleOfClearness2 = max(pow(length(d*dVWorld)/24,5)*100.0,0.0) + 1;
|
||||
|
||||
vec3 Directlight = (lightSource * sunCaustics * phase * (sunMul+0.5)) * sh * pow(abs(WsunVec.y),2) * bubbleOfClearness;
|
||||
vec3 Indirectlight = max(ambient * ambientMul, vec3(0.6,0.6,1.0) * exp(-waterCoefs) * bubbleOfClearness2) * ambfogfade ;
|
||||
|
||||
vec3 light = (Directlight + Indirectlight) * scatterCoef ;
|
||||
vec3 light = (Indirectlight + Directlight) * scatterCoef;
|
||||
|
||||
vL += (light - light * exp(-waterCoefs * dd * rayLength)) / waterCoefs * absorbance;
|
||||
absorbance *= exp(-dd * rayLength * waterCoefs);
|
||||
absorbance *= exp(-waterCoefs * dd * rayLength);
|
||||
}
|
||||
inColor += vL;
|
||||
}
|
||||
#endif
|
||||
// #endif
|
||||
|
||||
vec4 blueNoise(vec2 coord){
|
||||
return texelFetch2D(colortex6, ivec2(coord)%512 , 0) ;
|
||||
@ -255,6 +315,17 @@ vec2 R2_samples(int n){
|
||||
vec2 alpha = vec2(0.75487765, 0.56984026);
|
||||
return fract(alpha * n);
|
||||
}
|
||||
|
||||
float fogPhase2(float lightPoint){
|
||||
float linear = 1.0 - clamp(lightPoint*0.5+0.5,0.0,1.0);
|
||||
float linear2 = 1.0 - clamp(lightPoint,0.0,1.0);
|
||||
|
||||
float exponential = exp2(pow(linear,0.3) * -15.0 ) * 1.5;
|
||||
exponential += sqrt(exp2(sqrt(linear) * -12.5));
|
||||
|
||||
return exponential;
|
||||
}
|
||||
|
||||
//////////////////////////////VOID MAIN//////////////////////////////
|
||||
//////////////////////////////VOID MAIN//////////////////////////////
|
||||
//////////////////////////////VOID MAIN//////////////////////////////
|
||||
@ -263,64 +334,75 @@ vec2 R2_samples(int n){
|
||||
|
||||
|
||||
void main() {
|
||||
/* DRAWBUFFERS:0 */
|
||||
/* RENDERTARGETS:0 */
|
||||
|
||||
float noise_1 = R2_dither();
|
||||
float noise_1 = max(1.0 - R2_dither(),0.0015);
|
||||
float noise_2 = blueNoise();
|
||||
|
||||
|
||||
vec2 tc = floor(gl_FragCoord.xy)/VL_RENDER_RESOLUTION*texelSize+0.5*texelSize;
|
||||
|
||||
float z = texture2D(depthtex0,tc).x;
|
||||
bool iswater = texture2D(colortex7,tc).a > 0.99;
|
||||
|
||||
float z0 = texture2D(depthtex0,tc).x;
|
||||
|
||||
#ifdef DISTANT_HORIZONS
|
||||
float DH_z = texture2D(dhDepthTex,tc).x;
|
||||
float DH_z0 = texture2D(dhDepthTex,tc).x;
|
||||
#else
|
||||
float DH_z = 0.0;
|
||||
float DH_z0 = 0.0;
|
||||
#endif
|
||||
|
||||
vec3 viewPos = toScreenSpace_DH(tc/RENDER_SCALE, z, DH_z);
|
||||
float z = texture2D(depthtex1,tc).x;
|
||||
float DH_z = texture2D(dhDepthTex1,tc).x;
|
||||
|
||||
vec3 viewPos1 = toScreenSpace_DH(tc/RENDER_SCALE, z, DH_z);
|
||||
vec3 viewPos0 = toScreenSpace_DH(tc/RENDER_SCALE, z0, DH_z0);
|
||||
|
||||
vec3 playerPos = normalize(mat3(gbufferModelViewInverse) * viewPos1);
|
||||
// vec3 lightningColor = (lightningEffect / 3) * (max(eyeBrightnessSmooth.y,0)/240.);
|
||||
|
||||
|
||||
|
||||
float dirtAmount = Dirt_Amount;
|
||||
vec3 waterEpsilon = vec3(Water_Absorb_R, Water_Absorb_G, Water_Absorb_B);
|
||||
vec3 dirtEpsilon = vec3(Dirt_Absorb_R, Dirt_Absorb_G, Dirt_Absorb_B);
|
||||
vec3 totEpsilon = dirtEpsilon*dirtAmount + waterEpsilon;
|
||||
vec3 scatterCoef = dirtAmount * vec3(Dirt_Scatter_R, Dirt_Scatter_G, Dirt_Scatter_B) / 3.14;
|
||||
|
||||
vec3 directLightColor = lightCol.rgb/80.0;
|
||||
vec3 indirectLightColor = averageSkyCol/30.0;
|
||||
vec3 indirectLightColor_dynamic = averageSkyCol_Clouds/30.0;
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
///////////////// IN FRONT OF TRANSLUCENTS /////////////////
|
||||
////////////////////////////////////////////////////////////
|
||||
|
||||
if (isEyeInWater == 0){
|
||||
|
||||
#ifdef OVERWORLD_SHADER
|
||||
vec4 VolumetricFog = GetVolumetricFog(viewPos, vec2(noise_1,noise_2), lightCol.rgb/80.0, averageSkyCol/30.0);
|
||||
vec4 VolumetricFog = GetVolumetricFog(viewPos0, vec2(noise_1,noise_2), directLightColor, indirectLightColor);
|
||||
#endif
|
||||
|
||||
#if defined NETHER_SHADER || defined END_SHADER
|
||||
vec4 VolumetricFog = GetVolumetricFog(viewPos, noise_1, noise_2);
|
||||
vec4 VolumetricFog = GetVolumetricFog(viewPos0, noise_1, noise_2);
|
||||
#endif
|
||||
|
||||
gl_FragData[0] = clamp(VolumetricFog, 0.0, 65000.0);
|
||||
}
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////
|
||||
///////////////// BEHIND OF TRANSLUCENTS /////////////////
|
||||
//////////////////////////////////////////////////////////
|
||||
|
||||
if (isEyeInWater == 1){
|
||||
|
||||
float dirtAmount = Dirt_Amount;
|
||||
vec3 waterEpsilon = vec3(Water_Absorb_R, Water_Absorb_G, Water_Absorb_B);
|
||||
vec3 dirtEpsilon = vec3(Dirt_Absorb_R, Dirt_Absorb_G, Dirt_Absorb_B);
|
||||
vec3 totEpsilon = dirtEpsilon*dirtAmount + waterEpsilon;
|
||||
vec3 scatterCoef = dirtAmount * vec3(Dirt_Scatter_R, Dirt_Scatter_G, Dirt_Scatter_B) / 3.14;
|
||||
float estEyeDepth = clamp(eyeBrightnessSmooth.y/240.0,0.,1.0);
|
||||
// estEyeDepth = pow(estEyeDepth,3.0) * 32.0;
|
||||
estEyeDepth = 0.0;
|
||||
|
||||
#ifdef OVERWORLD_SHADER
|
||||
// vec3 lightningColor = (lightningEffect / 3) * (max(eyeBrightnessSmooth.y,0)/240.);
|
||||
|
||||
float estEyeDepth = 1.0-clamp(eyeBrightnessSmooth.y/240.0,0.,1.0);
|
||||
estEyeDepth = pow(estEyeDepth,3.0) * 32.0;
|
||||
vec3 vl = vec3(0.0);
|
||||
waterVolumetrics(vl, vec3(0.0), viewPos0, estEyeDepth, estEyeDepth, length(viewPos0), noise_1, totEpsilon, scatterCoef, indirectLightColor_dynamic, directLightColor , dot(normalize(viewPos0), normalize(sunVec* lightCol.a ) ));
|
||||
|
||||
gl_FragData[0] = clamp(vec4(vl,1.0),0.000001,65000.);
|
||||
|
||||
vec3 lightColVol = lightCol.rgb / 80.;
|
||||
|
||||
vec3 lightningColor = (lightningEffect / 3) * (max(eyeBrightnessSmooth.y,0)/240.);
|
||||
vec3 ambientColVol = (averageSkyCol/30.0);
|
||||
|
||||
vec3 vl = vec3(0.0);
|
||||
waterVolumetrics(vl, vec3(0.0), viewPos, estEyeDepth, estEyeDepth, length(viewPos), noise_1, totEpsilon, scatterCoef, ambientColVol, lightColVol*(1.0-pow(1.0-sunElevation*lightCol.a,5.0)) , dot(normalize(viewPos), normalize(sunVec* lightCol.a ) ));
|
||||
|
||||
gl_FragData[0] = clamp(vec4(vl,1.0),0.000001,65000.);
|
||||
#else
|
||||
vec3 fragpos0 = toScreenSpace(vec3(tc,z));
|
||||
vec3 ambientColVol = max(vec3(1.0,0.5,1.0) * 0.6, vec3(0.2,0.4,1.0) * MIN_LIGHT_AMOUNT*0.01);
|
||||
gl_FragData[0].a = 1;
|
||||
waterVolumetrics_notoverworld(gl_FragData[0].rgb, fragpos0, viewPos, 1.0, 1.0, 1.0, blueNoise(), totEpsilon, scatterCoef, ambientColVol);
|
||||
#endif
|
||||
|
||||
}
|
||||
}
|
@ -4,11 +4,13 @@
|
||||
|
||||
flat varying vec4 lightCol;
|
||||
flat varying vec3 averageSkyCol;
|
||||
flat varying vec3 averageSkyCol_Clouds;
|
||||
|
||||
flat varying vec3 WsunVec;
|
||||
flat varying vec3 refractedSunVec;
|
||||
|
||||
flat varying float tempOffsets;
|
||||
uniform vec2 texelSize;
|
||||
|
||||
uniform sampler2D colortex4;
|
||||
|
||||
@ -28,21 +30,40 @@ uniform int frameCounter;
|
||||
|
||||
uniform float frameTimeCounter;
|
||||
#include "/lib/Shadow_Params.glsl"
|
||||
#include "/lib/sky_gradient.glsl"
|
||||
void main() {
|
||||
gl_Position = ftransform();
|
||||
|
||||
// gl_Position.xy = (gl_Position.xy*0.5+0.5)*0.51*2.0-1.0;
|
||||
gl_Position.xy = (gl_Position.xy*0.5+0.5)*(0.01+VL_RENDER_RESOLUTION)*2.0-1.0;
|
||||
|
||||
#ifdef TAA
|
||||
tempOffsets = HaltonSeq2(frameCounter%10000);
|
||||
#else
|
||||
tempOffsets = 0.0;
|
||||
#endif
|
||||
|
||||
#ifdef OVERWORLD_SHADER
|
||||
lightCol.rgb = texelFetch2D(colortex4,ivec2(6,37),0).rgb;
|
||||
averageSkyCol = texelFetch2D(colortex4,ivec2(1,37),0).rgb;
|
||||
averageSkyCol_Clouds = texelFetch2D(colortex4,ivec2(0,37),0).rgb;
|
||||
#endif
|
||||
|
||||
#ifdef NETHER_SHADER
|
||||
lightCol.rgb = vec3(0.0);
|
||||
averageSkyCol = vec3(0.0);
|
||||
averageSkyCol_Clouds = vec3(2.0, 1.0, 0.5) * 30.0;
|
||||
#endif
|
||||
|
||||
#ifdef END_SHADER
|
||||
lightCol.rgb = vec3(0.0);
|
||||
averageSkyCol = vec3(0.0);
|
||||
averageSkyCol_Clouds = vec3(5.0);
|
||||
#endif
|
||||
|
||||
averageSkyCol = texelFetch2D(colortex4,ivec2(1,37),0).rgb;
|
||||
|
||||
lightCol.a = float(sunElevation > 1e-5)*2.0 - 1.0;
|
||||
lightCol.rgb = texelFetch2D(colortex4,ivec2(6,37),0).rgb;
|
||||
|
||||
WsunVec = lightCol.a * normalize(mat3(gbufferModelViewInverse) * sunPosition);
|
||||
// WsunVec = normalize(LightDir);
|
||||
|
||||
|
||||
|
||||
refractedSunVec = refract(WsunVec, -vec3(0.0,1.0,0.0), 1.0/1.33333);
|
||||
}
|
||||
|
@ -107,28 +107,25 @@ float linearizeDepthFast(const in float depth, const in float near, const in flo
|
||||
return (near * far) / (depth * (near - far) + far);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
vec4 BilateralUpscale(sampler2D tex, sampler2D depth, vec2 coord, float referenceDepth){
|
||||
|
||||
const ivec2 scaling = ivec2(1.0/VL_RENDER_RESOLUTION);
|
||||
ivec2 posDepth = ivec2(coord*VL_RENDER_RESOLUTION)*scaling;
|
||||
ivec2 scaling = ivec2(1.0/VL_RENDER_RESOLUTION);
|
||||
ivec2 posDepth = ivec2(coord*VL_RENDER_RESOLUTION) * scaling;
|
||||
ivec2 posColor = ivec2(coord*VL_RENDER_RESOLUTION);
|
||||
|
||||
// vec2 pos = mod(coord,2)*2 - 1;
|
||||
ivec2 pos = ivec2((coord*texelSize) + 1.0);
|
||||
// ivec2 pos = (ivec2(gl_FragCoord.xy) % 2 )*2;
|
||||
ivec2 pos = ivec2(gl_FragCoord.xy*texelSize + 1);
|
||||
|
||||
ivec2 getRadius[4] = ivec2[](
|
||||
ivec2(-2,-2),
|
||||
ivec2(-2, 0),
|
||||
ivec2(-2,-2),
|
||||
ivec2(-2, 0),
|
||||
ivec2( 0, 0),
|
||||
ivec2( 0,-2)
|
||||
);
|
||||
|
||||
float diffThreshold = zMults.x;
|
||||
#ifdef DISTANT_HORIZONS
|
||||
float diffThreshold = 0.01;
|
||||
#else
|
||||
float diffThreshold = zMults.x;
|
||||
#endif
|
||||
|
||||
|
||||
vec4 RESULT = vec4(0.0);
|
||||
float SUM = 0.0;
|
||||
@ -136,96 +133,24 @@ vec4 BilateralUpscale(sampler2D tex, sampler2D depth, vec2 coord, float referenc
|
||||
for (int i = 0; i < 4; i++) {
|
||||
|
||||
ivec2 radius = getRadius[i];
|
||||
|
||||
float offsetDepth = ld(texelFetch2D(depth, (posDepth + radius * scaling + pos * scaling),0).r);
|
||||
|
||||
|
||||
#ifdef DISTANT_HORIZONS
|
||||
float offsetDepth = sqrt(texelFetch2D(depth, posDepth + radius * scaling + pos * scaling,0).a/65000.0);
|
||||
#else
|
||||
float offsetDepth = ld(texelFetch2D(depth, posDepth + radius * scaling + pos * scaling, 0).r);
|
||||
#endif
|
||||
|
||||
float EDGES = abs(offsetDepth - referenceDepth) < diffThreshold ? 1.0 : 1e-5;
|
||||
|
||||
RESULT += texelFetch2D(tex, (posColor + radius + pos),0) * EDGES;
|
||||
|
||||
RESULT += texelFetch2D(tex, posColor + radius + pos, 0) * EDGES;
|
||||
|
||||
SUM += EDGES;
|
||||
}
|
||||
|
||||
// return vec4(1) * SUM;
|
||||
return RESULT / SUM;
|
||||
|
||||
|
||||
// coord = coord;
|
||||
// vec4 vl = vec4(0.0);
|
||||
// float sum = 0.0;
|
||||
// mat3x3 weights;
|
||||
// const ivec2 scaling = ivec2(1.0/VL_RENDER_RESOLUTION);
|
||||
// ivec2 posD = ivec2(coord*VL_RENDER_RESOLUTION)*scaling;
|
||||
// ivec2 posVl = ivec2(coord*VL_RENDER_RESOLUTION);
|
||||
// float dz = zMults.x;
|
||||
// ivec2 pos = (ivec2(gl_FragCoord.xy) % 2 )*2;
|
||||
// //pos = ivec2(1,-1);
|
||||
|
||||
// ivec2 tcDepth = posD + ivec2(-2,-2) * scaling + pos * scaling;
|
||||
// float dsample = ld(texelFetch2D(depth,tcDepth,0).r);
|
||||
// float w = abs(dsample-frDepth) < dz ? 1.0 : 1e-5;
|
||||
// vl += texelFetch2D(tex,posVl+ivec2(-2)+pos,0)*w;
|
||||
// sum += w;
|
||||
|
||||
// tcDepth = posD + ivec2(-2,0) * scaling + pos * scaling;
|
||||
// dsample = ld(texelFetch2D(depth,tcDepth,0).r);
|
||||
// w = abs(dsample-frDepth) < dz ? 1.0 : 1e-5;
|
||||
// vl += texelFetch2D(tex,posVl+ivec2(-2,0)+pos,0)*w;
|
||||
// sum += w;
|
||||
|
||||
// tcDepth = posD + ivec2(0) + pos * scaling;
|
||||
// dsample = ld(texelFetch2D(depth,tcDepth,0).r);
|
||||
// w = abs(dsample-frDepth) < dz ? 1.0 : 1e-5;
|
||||
// vl += texelFetch2D(tex,posVl+ivec2(0)+pos,0)*w;
|
||||
// sum += w;
|
||||
|
||||
// tcDepth = posD + ivec2(0,-2) * scaling + pos * scaling;
|
||||
// dsample = ld(texelFetch2D(depth,tcDepth,0).r);
|
||||
// w = abs(dsample-frDepth) < dz ? 1.0 : 1e-5;
|
||||
// vl += texelFetch2D(tex,posVl+ivec2(0,-2)+pos,0)*w;
|
||||
// sum += w;
|
||||
|
||||
// return vl/sum;
|
||||
}
|
||||
|
||||
vec4 BilateralUpscale_DH(sampler2D tex, sampler2D depth, vec2 coord, float referenceDepth, bool depthCheck){
|
||||
|
||||
const ivec2 scaling = ivec2(1.0/VL_RENDER_RESOLUTION);
|
||||
ivec2 posDepth = ivec2(coord*VL_RENDER_RESOLUTION)*scaling;
|
||||
ivec2 posColor = ivec2(coord*VL_RENDER_RESOLUTION);
|
||||
|
||||
// vec2 pos = mod(coord,2)*2 - 1;
|
||||
ivec2 pos = ivec2(coord*texelSize) + 1;
|
||||
// ivec2 pos = (ivec2(gl_FragCoord.xy) % 2 )*2;
|
||||
|
||||
ivec2 getRadius[4] = ivec2[](
|
||||
ivec2(-2,-2),
|
||||
ivec2(-2, 0),
|
||||
ivec2( 0, 0),
|
||||
ivec2( 0,-2)
|
||||
);
|
||||
|
||||
// float diffThreshold = referenceDepth;
|
||||
|
||||
float diffThreshold = zMults_DH.x;
|
||||
|
||||
vec4 RESULT = vec4(0.0);
|
||||
float SUM = 0.0;
|
||||
|
||||
for (int i = 0; i < 4; i++) {
|
||||
|
||||
ivec2 radius = getRadius[i];
|
||||
|
||||
float offsetDepth = sqrt(texelFetch2D(depth, (posDepth + radius * scaling + pos * scaling),0).a/65000.0);
|
||||
|
||||
float EDGES = abs(offsetDepth - referenceDepth) < diffThreshold ? 1.0 : 1e-5;
|
||||
|
||||
RESULT += texelFetch2D(tex, (posColor + radius + pos),0) * EDGES;
|
||||
|
||||
SUM += EDGES;
|
||||
}
|
||||
|
||||
return RESULT / SUM;
|
||||
}
|
||||
vec3 decode (vec2 encn){
|
||||
vec3 n = vec3(0.0);
|
||||
encn = encn * 2.0 - 1.0;
|
||||
@ -273,17 +198,18 @@ void applyContrast(inout vec3 color, float contrast){
|
||||
color = ((color - 0.5) * max(contrast, 0.0)) + 0.5;
|
||||
}
|
||||
|
||||
void ApplyDistortion(inout vec2 Texcoord, vec2 TangentNormals, vec2 depths, bool isEntity){
|
||||
void ApplyDistortion(inout vec2 Texcoord, vec2 TangentNormals, float lineardistance, bool isEntity){
|
||||
|
||||
vec2 UnalteredTexcoord = Texcoord;
|
||||
|
||||
float refractionStrength = isEntity ? 0.5 : 1.0;
|
||||
|
||||
Texcoord = abs(Texcoord + (TangentNormals * clamp((ld(depths.x) - ld(depths.y)) * 0.5,0.0,0.15)) * RENDER_SCALE * refractionStrength );
|
||||
// Texcoord = abs(Texcoord + (TangentNormals * clamp((ld(depths.x) - ld(depths.y)) * 0.5,0.0,0.15)) * RENDER_SCALE * refractionStrength );
|
||||
Texcoord = abs(Texcoord + (TangentNormals * mix(0.01, 0.1, pow(clamp(1.0-lineardistance/(32*4),0.0,1.0),2))) * RENDER_SCALE * refractionStrength );
|
||||
|
||||
float DistortedAlpha = decodeVec2(texture2D(colortex11,Texcoord).b).g;
|
||||
|
||||
if(DistortedAlpha <= 0.001) Texcoord = UnalteredTexcoord; // remove distortion on non-translucents
|
||||
if(DistortedAlpha < 0.1) Texcoord = UnalteredTexcoord; // remove distortion on non-translucents
|
||||
}
|
||||
|
||||
uniform float dhRenderDistance;
|
||||
@ -297,7 +223,7 @@ void main() {
|
||||
|
||||
float z = texture2D(depthtex0,texcoord).x;
|
||||
float z2 = texture2D(depthtex1,texcoord).x;
|
||||
float frDepth = ld(z2);
|
||||
float frDepth = ld(z);
|
||||
|
||||
float swappedDepth = z;
|
||||
|
||||
@ -351,11 +277,17 @@ void main() {
|
||||
bool isTranslucentEntity = abs(trpData-0.1) < 0.01;
|
||||
float translucentAlpha = trpData;
|
||||
|
||||
|
||||
|
||||
////// --------------- get volumetrics
|
||||
#ifdef DISTANT_HORIZONS
|
||||
vec4 vl = BilateralUpscale_DH(colortex0, colortex12, gl_FragCoord.xy, sqrt(texture2D(colortex12,texcoord).a/65000.0), z >= 1.0);
|
||||
#ifdef TOGGLE_VL_FOG
|
||||
#ifdef DISTANT_HORIZONS
|
||||
vec4 vl = BilateralUpscale(colortex0, colortex12, gl_FragCoord.xy, sqrt(texture2D(colortex12,texcoord).a/65000.0));
|
||||
#else
|
||||
vec4 vl = BilateralUpscale(colortex0, depthtex0, gl_FragCoord.xy, frDepth);
|
||||
#endif
|
||||
#else
|
||||
vec4 vl = BilateralUpscale(colortex0, depthtex0, gl_FragCoord.xy, frDepth);
|
||||
vec4 vl = vec4(0,0,0,1);
|
||||
#endif
|
||||
|
||||
float bloomyFogMult = 1.0;
|
||||
@ -363,7 +295,7 @@ void main() {
|
||||
////// --------------- distort texcoords as a refraction effect
|
||||
vec2 refractedCoord = texcoord;
|
||||
#ifdef Refraction
|
||||
ApplyDistortion(refractedCoord, tangentNormals, vec2(z2,z), isTranslucentEntity);
|
||||
ApplyDistortion(refractedCoord, tangentNormals, linearDistance, isTranslucentEntity);
|
||||
#endif
|
||||
|
||||
////// --------------- MAIN COLOR BUFFER
|
||||
@ -405,7 +337,7 @@ void main() {
|
||||
#ifdef BorderFog
|
||||
color.rgb = mix(color.rgb, borderFogColor, fog);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
////// --------------- VARIOUS FOG EFFECTS (behind volumetric fog)
|
||||
//////////// blindness, nightvision, liquid fogs and misc fogs
|
||||
@ -446,17 +378,30 @@ void main() {
|
||||
vec3 dirtEpsilon = vec3(Dirt_Absorb_R, Dirt_Absorb_G, Dirt_Absorb_B);
|
||||
vec3 totEpsilon = dirtEpsilon*dirtAmount + waterEpsilon;
|
||||
|
||||
vec3 fogfade = clamp( exp( (linearDistance / -4) * totEpsilon ) ,0.0,1.0);
|
||||
fogfade *= 1.0 - clamp( linearDistance / far,0.0,1.0);
|
||||
vec3 absorbColor = exp(-totEpsilon*linearDistance);
|
||||
vec3 maxAbsorb = exp(-8.0 * totEpsilon);
|
||||
|
||||
color.rgb *= fogfade;
|
||||
bloomyFogMult *= 0.3;
|
||||
#ifdef OVERWORLD_SHADER
|
||||
|
||||
linearDistance = length(vec3(p3.x,max(-p3.y,0.0),p3.z));
|
||||
float fogfade = exp(-0.001*(linearDistance*linearDistance));
|
||||
vec3 thresholdAbsorbedColor = mix(maxAbsorb, absorbColor, clamp(dot(absorbColor,vec3(0.33333)),0.0,1.0));
|
||||
color.rgb = mix(vec3(1.0) * clamp(WsunVec.y,0,1) * pow(normalize(np3).y*0.3+0.7,1.5) * maxAbsorb, color.rgb * thresholdAbsorbedColor, clamp(fogfade,0.0,1.0));
|
||||
|
||||
#else
|
||||
|
||||
color.rgb *= absorbColor;
|
||||
|
||||
#endif
|
||||
|
||||
bloomyFogMult *= 0.4;
|
||||
}
|
||||
|
||||
////// --------------- BLEND FOG INTO SCENE
|
||||
//////////// apply VL fog over opaque and translucents
|
||||
color *= vl.a;
|
||||
color += vl.rgb;
|
||||
bloomyFogMult *= vl.a;
|
||||
|
||||
////// --------------- VARIOUS FOG EFFECTS (in front of volumetric fog)
|
||||
//////////// blindness, nightvision, liquid fogs and misc fogs
|
||||
@ -495,10 +440,10 @@ void main() {
|
||||
#endif
|
||||
// color.rgb = vec3(1) * sqrt(texture2D(colortex12,texcoord).a/65000.0);
|
||||
|
||||
gl_FragData[0].r = vl.a * bloomyFogMult; // pass fog alpha so bloom can do bloomy fog
|
||||
gl_FragData[0].r = bloomyFogMult; // pass fog alpha so bloom can do bloomy fog
|
||||
gl_FragData[1].rgb = clamp(color.rgb, 0.0,68000.0);
|
||||
|
||||
// if(isTranslucentEntity) gl_FragData[1].rgb = vec3(255);
|
||||
// gl_FragData[1].rgb = vec3(1) * sqrt(texelFetch2D(colortex12,ivec2(gl_FragCoord.xy),0).a/65000.0);
|
||||
|
||||
// gl_FragData[1].rgb = clamp(vec3(tangentNormals.xy,0), 0.0,68000.0);
|
||||
// gl_FragData[1].rgb = vl.rgb;
|
||||
}
|
@ -3,11 +3,16 @@
|
||||
varying vec2 texcoord;
|
||||
flat varying vec3 zMults;
|
||||
flat varying vec3 zMults_DH;
|
||||
flat varying vec3 WsunVec;
|
||||
|
||||
uniform float far;
|
||||
uniform float near;
|
||||
uniform float dhFarPlane;
|
||||
uniform float dhNearPlane;
|
||||
|
||||
uniform mat4 gbufferModelViewInverse;
|
||||
uniform vec3 sunPosition;
|
||||
uniform float sunElevation;
|
||||
flat varying vec2 TAA_Offset;
|
||||
uniform int framemod8;
|
||||
const vec2[8] offsets = vec2[8](vec2(1./8.,-3./8.),
|
||||
@ -37,7 +42,14 @@ void main() {
|
||||
skyGroundColor = texelFetch2D(colortex4,ivec2(1,37),0).rgb / 30.0;
|
||||
#endif
|
||||
|
||||
TAA_Offset = offsets[framemod8];
|
||||
#ifdef TAA
|
||||
TAA_Offset = offsets[framemod8];
|
||||
#else
|
||||
TAA_Offset = vec2(0.0);
|
||||
#endif
|
||||
|
||||
float lightCola = float(sunElevation > 1e-5)*2.0 - 1.0;
|
||||
WsunVec = normalize(mat3(gbufferModelViewInverse) * sunPosition);
|
||||
|
||||
zMults = vec3(1.0/(far * near),far+near,far-near);
|
||||
zMults_DH = vec3(1.0/(dhFarPlane * dhNearPlane),dhFarPlane+dhNearPlane,dhFarPlane-dhNearPlane);
|
||||
|
@ -13,9 +13,9 @@ const int colortex8Format = RGBA8; // Specular Texture
|
||||
const int colortex9Format = RGBA8; // rain in alpha
|
||||
const int colortex10Format = RGBA16; // resourcepack Skies
|
||||
const int colortex11Format = RGBA16; // unchanged translucents albedo, alpha and tangent normals
|
||||
|
||||
const int colortex12Format = RGBA16F; // DISTANT HORIZONS + VANILLA MIXED DEPTHs
|
||||
|
||||
const int colortex13Format = RGBA16F; // low res VL (composite5->composite15)
|
||||
const int colortex14Format = RGBA8; // rg = SSAO and SS-SSS. a = skylightmap for translucents.
|
||||
const int colortex15Format = RGBA8; // flat normals and vanilla AO
|
||||
*/
|
||||
|
@ -126,6 +126,8 @@ float linearizeDepthFast(const in float depth, const in float near, const in flo
|
||||
// uniform sampler2D colortex12;
|
||||
// const bool shadowHardwareFiltering = true;
|
||||
uniform sampler2DShadow shadow;
|
||||
uniform sampler2DShadow shadowtex0;
|
||||
uniform sampler2DShadow shadowtex1;
|
||||
#define TEST
|
||||
#define TIMEOFDAYFOG
|
||||
#include "/lib/lightning_stuff.glsl"
|
||||
@ -281,9 +283,10 @@ if (gl_FragCoord.x > 18.+257. && gl_FragCoord.y > 1. && gl_FragCoord.x < 18+257+
|
||||
suncol = vec3(0.0);
|
||||
#endif
|
||||
|
||||
vec4 clouds = renderClouds(mat3(gbufferModelView)*viewVector*1024., vec2(fract(frameCounter/1.6180339887),1-fract(frameCounter/1.6180339887)), suncol*1.75, skyGroundCol/30.0);
|
||||
vec4 clouds = renderClouds(mat3(gbufferModelView)*viewVector*1024., vec2(fract(frameCounter/1.6180339887),1-fract(frameCounter/1.6180339887)), suncol*2.0, skyGroundCol/30.0);
|
||||
sky = sky*clouds.a + clouds.rgb / 5.0;
|
||||
|
||||
sky = mix(dot(sky,vec3(0.333)) * vec3(0.5), sky, pow(clamp(viewVector.y+1.0,0.0,1.0),5));
|
||||
vec4 VL_Fog = GetVolumetricFog(mat3(gbufferModelView)*viewVector*1024., vec2(fract(frameCounter/1.6180339887),1-fract(frameCounter/1.6180339887)), lightSourceColor*1.75, skyGroundCol/30.0);
|
||||
|
||||
sky = sky * VL_Fog.a + VL_Fog.rgb / 5.0;
|
||||
|
@ -45,7 +45,12 @@ vec3 toScreenSpace(vec3 p) {
|
||||
}
|
||||
|
||||
float R2_dither(){
|
||||
#ifdef TAA
|
||||
vec2 coord = gl_FragCoord.xy + (frameCounter%40000) * 2.0;
|
||||
#else
|
||||
|
||||
vec2 coord = gl_FragCoord.xy;
|
||||
#endif
|
||||
vec2 alpha = vec2(0.75487765, 0.56984026);
|
||||
return fract(alpha.x * coord.x + alpha.y * coord.y ) ;
|
||||
}
|
||||
@ -67,12 +72,14 @@ const vec2[8] offsets = vec2[8](vec2(1./8.,-3./8.),
|
||||
vec2(3,7.)/8.,
|
||||
vec2(7.,-7.)/8.);
|
||||
float blueNoise(){
|
||||
return fract(texelFetch2D(noisetex, ivec2(1.0-gl_FragCoord.xy)%512, 0).a + 1.0/1.6180339887 * frameCounter);
|
||||
}
|
||||
float blueNoise2(){
|
||||
return fract(texelFetch2D(noisetex, ivec2(gl_FragCoord.xy)%512, 0).a + 1.0/1.6180339887 * frameCounter);
|
||||
#ifdef TAA
|
||||
return fract(texelFetch2D(noisetex, ivec2(1.0-gl_FragCoord.xy)%512, 0).a + 1.0/1.6180339887 * frameCounter);
|
||||
#else
|
||||
return fract(texelFetch2D(noisetex, ivec2(1.0-gl_FragCoord.xy)%512, 0).a);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
vec3 normVec (vec3 vec){
|
||||
return vec*inversesqrt(dot(vec,vec));
|
||||
}
|
||||
@ -100,7 +107,7 @@ void main() {
|
||||
|
||||
vec3 viewPos = toScreenSpace(vec3(halfResTC*texelSize,1.0));
|
||||
|
||||
vec4 VolumetricClouds = renderClouds(viewPos, vec2(R2_dither(),blueNoise2()), sunColor/80.0, averageSkyCol/30.0);
|
||||
vec4 VolumetricClouds = renderClouds(viewPos, vec2(R2_dither(), blueNoise()), sunColor/80.0, averageSkyCol/30.0);
|
||||
|
||||
// gl_FragData[0] = vec4(0.0,0.0,0.0,1.0);
|
||||
gl_FragData[0] = VolumetricClouds;
|
||||
|
392
shaders/dimensions/deferred3.fsh
Normal file
392
shaders/dimensions/deferred3.fsh
Normal file
@ -0,0 +1,392 @@
|
||||
#include "/lib/settings.glsl"
|
||||
|
||||
flat varying vec4 lightCol;
|
||||
flat varying vec3 averageSkyCol;
|
||||
// flat varying vec3 averageSkyCol_Clouds;
|
||||
|
||||
uniform sampler2D noisetex;
|
||||
uniform sampler2D depthtex0;
|
||||
uniform sampler2D depthtex1;
|
||||
uniform sampler2D dhDepthTex;
|
||||
uniform sampler2D dhDepthTex1;
|
||||
|
||||
uniform sampler2D colortex2;
|
||||
uniform sampler2D colortex3;
|
||||
// uniform sampler2D colortex4;
|
||||
uniform sampler2D colortex6;
|
||||
|
||||
flat varying vec3 WsunVec;
|
||||
uniform vec3 sunVec;
|
||||
uniform float sunElevation;
|
||||
|
||||
// uniform float far;
|
||||
uniform float dhFarPlane;
|
||||
uniform float dhNearPlane;
|
||||
|
||||
uniform int frameCounter;
|
||||
uniform float frameTimeCounter;
|
||||
|
||||
// varying vec2 texcoord;
|
||||
uniform vec2 texelSize;
|
||||
// flat varying vec2 TAA_Offset;
|
||||
|
||||
uniform int isEyeInWater;
|
||||
uniform float rainStrength;
|
||||
uniform ivec2 eyeBrightnessSmooth;
|
||||
uniform float eyeAltitude;
|
||||
|
||||
#define DHVLFOG
|
||||
#define diagonal3(m) vec3((m)[0].x, (m)[1].y, m[2].z)
|
||||
#define projMAD(m, v) (diagonal3(m) * (v) + (m)[3].xyz)
|
||||
|
||||
#include "/lib/color_transforms.glsl"
|
||||
#include "/lib/color_dither.glsl"
|
||||
#include "/lib/projections.glsl"
|
||||
#include "/lib/res_params.glsl"
|
||||
#include "/lib/sky_gradient.glsl"
|
||||
#include "/lib/Shadow_Params.glsl"
|
||||
|
||||
#include "/lib/DistantHorizons_projections.glsl"
|
||||
|
||||
float DH_ld(float dist) {
|
||||
return (2.0 * dhNearPlane) / (dhFarPlane + dhNearPlane - dist * (dhFarPlane - dhNearPlane));
|
||||
}
|
||||
float DH_inv_ld (float lindepth){
|
||||
return -((2.0*dhNearPlane/lindepth)-dhFarPlane-dhNearPlane)/(dhFarPlane-dhNearPlane);
|
||||
}
|
||||
|
||||
float linearizeDepthFast(const in float depth, const in float near, const in float far) {
|
||||
return (near * far) / (depth * (near - far) + far);
|
||||
}
|
||||
|
||||
|
||||
#ifdef OVERWORLD_SHADER
|
||||
const bool shadowHardwareFiltering = true;
|
||||
uniform sampler2DShadow shadow;
|
||||
|
||||
flat varying vec3 refractedSunVec;
|
||||
|
||||
#define TIMEOFDAYFOG
|
||||
#include "/lib/lightning_stuff.glsl"
|
||||
#include "/lib/volumetricClouds.glsl"
|
||||
#include "/lib/overworld_fog.glsl"
|
||||
#endif
|
||||
#ifdef NETHER_SHADER
|
||||
uniform sampler2D colortex4;
|
||||
#include "/lib/nether_fog.glsl"
|
||||
#endif
|
||||
#ifdef END_SHADER
|
||||
uniform sampler2D colortex4;
|
||||
#include "/lib/end_fog.glsl"
|
||||
#endif
|
||||
|
||||
#define fsign(a) (clamp((a)*1e35,0.,1.)*2.-1.)
|
||||
|
||||
float interleaved_gradientNoise(){
|
||||
return fract(52.9829189*fract(0.06711056*gl_FragCoord.x + 0.00583715*gl_FragCoord.y)+ 1.0/1.6180339887 * frameCounter);
|
||||
}
|
||||
float blueNoise(){
|
||||
return fract(texelFetch2D(noisetex, ivec2(gl_FragCoord.xy)%512, 0).a+ 1.0/1.6180339887 * frameCounter );
|
||||
}
|
||||
float R2_dither(){
|
||||
vec2 coord = gl_FragCoord.xy + (frameCounter%40000) * 2.0;
|
||||
vec2 alpha = vec2(0.75487765, 0.56984026);
|
||||
return fract(alpha.x * coord.x + alpha.y * coord.y ) ;
|
||||
}
|
||||
void waterVolumetrics_notoverworld(inout vec3 inColor, vec3 rayStart, vec3 rayEnd, float estEndDepth, float estSunDepth, float rayLength, float dither, vec3 waterCoefs, vec3 scatterCoef, vec3 ambient){
|
||||
inColor *= exp(-rayLength * waterCoefs); //No need to take the integrated value
|
||||
|
||||
int spCount = rayMarchSampleCount;
|
||||
vec3 start = toShadowSpaceProjected(rayStart);
|
||||
vec3 end = toShadowSpaceProjected(rayEnd);
|
||||
vec3 dV = (end-start);
|
||||
//limit ray length at 32 blocks for performance and reducing integration error
|
||||
//you can't see above this anyway
|
||||
float maxZ = min(rayLength,12.0)/(1e-8+rayLength);
|
||||
dV *= maxZ;
|
||||
|
||||
|
||||
rayLength *= maxZ;
|
||||
|
||||
float dY = normalize(mat3(gbufferModelViewInverse) * rayEnd).y * rayLength;
|
||||
estEndDepth *= maxZ;
|
||||
estSunDepth *= maxZ;
|
||||
|
||||
vec3 wpos = mat3(gbufferModelViewInverse) * rayStart + gbufferModelViewInverse[3].xyz;
|
||||
vec3 dVWorld = (wpos-gbufferModelViewInverse[3].xyz);
|
||||
|
||||
vec3 absorbance = vec3(1.0);
|
||||
vec3 vL = vec3(0.0);
|
||||
|
||||
float expFactor = 11.0;
|
||||
for (int i=0;i<spCount;i++) {
|
||||
float d = (pow(expFactor, float(i+dither)/float(spCount))/expFactor - 1.0/expFactor)/(1-1.0/expFactor);
|
||||
float dd = pow(expFactor, float(i+dither)/float(spCount)) * log(expFactor) / float(spCount)/(expFactor-1.0);
|
||||
vec3 spPos = start.xyz + dV*d;
|
||||
|
||||
vec3 progressW = start.xyz+cameraPosition+dVWorld;
|
||||
|
||||
vec3 ambientMul = exp(-max(estEndDepth * d,0.0) * waterCoefs );
|
||||
vec3 Indirectlight = ambientMul*ambient;
|
||||
|
||||
vec3 light = Indirectlight * scatterCoef;
|
||||
|
||||
vL += (light - light * exp(-waterCoefs * dd * rayLength)) / waterCoefs * absorbance;
|
||||
absorbance *= exp(-dd * rayLength * waterCoefs);
|
||||
}
|
||||
inColor += vL;
|
||||
|
||||
}
|
||||
|
||||
#ifdef OVERWORLD_SHADER
|
||||
float waterCaustics(vec3 wPos, vec3 lightSource) { // water waves
|
||||
|
||||
vec2 pos = wPos.xz + (lightSource.xz/lightSource.y*wPos.y);
|
||||
if(isEyeInWater==1) pos = wPos.xz - (lightSource.xz/lightSource.y*wPos.y); // fix the fucky
|
||||
vec2 movement = vec2(-0.035*frameTimeCounter);
|
||||
float caustic = 0.0;
|
||||
float weightSum = 0.0;
|
||||
float radiance = 2.39996;
|
||||
mat2 rotationMatrix = mat2(vec2(cos(radiance), -sin(radiance)), vec2(sin(radiance), cos(radiance)));
|
||||
|
||||
const vec2 wave_size[4] = vec2[](
|
||||
vec2(64.),
|
||||
vec2(32.,16.),
|
||||
vec2(16.,32.),
|
||||
vec2(48.)
|
||||
);
|
||||
|
||||
for (int i = 0; i < 4; i++){
|
||||
pos = rotationMatrix * pos;
|
||||
|
||||
vec2 speed = movement;
|
||||
float waveStrength = 1.0;
|
||||
|
||||
if( i == 0) {
|
||||
speed *= 0.15;
|
||||
waveStrength = 2.0;
|
||||
}
|
||||
|
||||
float small_wave = texture2D(noisetex, pos / wave_size[i] + speed ).b * waveStrength;
|
||||
|
||||
caustic += max( 1.0-sin( 1.0-pow( 0.5+sin( small_wave*3.0 )*0.5, 25.0) ), 0);
|
||||
|
||||
weightSum -= exp2(caustic*0.1);
|
||||
}
|
||||
return caustic / weightSum;
|
||||
}
|
||||
|
||||
|
||||
|
||||
void waterVolumetrics(inout vec3 inColor, vec3 rayStart, vec3 rayEnd, float estEyeDepth, float estSunDepth, float rayLength, float dither, vec3 waterCoefs, vec3 scatterCoef, vec3 ambient, vec3 lightSource, float VdotL){
|
||||
int spCount = 8;
|
||||
|
||||
vec3 start = toShadowSpaceProjected(rayStart);
|
||||
vec3 end = toShadowSpaceProjected(rayEnd);
|
||||
vec3 dV = (end-start);
|
||||
|
||||
//limit ray length at 32 blocks for performance and reducing integration error
|
||||
//you can't see above this anyway
|
||||
float maxZ = min(rayLength,32.0)/(1e-8+rayLength);
|
||||
dV *= maxZ;
|
||||
vec3 dVWorld = mat3(gbufferModelViewInverse) * (rayEnd - rayStart) * maxZ;
|
||||
rayLength *= maxZ;
|
||||
float dY = normalize(mat3(gbufferModelViewInverse) * rayEnd).y * rayLength;
|
||||
|
||||
vec3 progressW = gbufferModelViewInverse[3].xyz+cameraPosition;
|
||||
// vec3 WsunVec = mat3(gbufferModelViewInverse) * sunVec * lightCol.a;
|
||||
|
||||
// float phase = (phaseg(VdotL,0.6) + phaseg(VdotL,0.8)) * 0.5;
|
||||
float phase = fogPhase(VdotL) ;
|
||||
|
||||
vec3 absorbance = vec3(1.0);
|
||||
vec3 vL = vec3(0.0);
|
||||
float expFactor = 11.0;
|
||||
|
||||
for (int i=0;i<spCount;i++) {
|
||||
float d = (pow(expFactor, float(i+dither)/float(spCount))/expFactor - 1.0/expFactor)/(1-1.0/expFactor); // exponential step position (0-1)
|
||||
float dd = pow(expFactor, float(i+dither)/float(spCount)) * log(expFactor) / float(spCount)/(expFactor-1.0); //step length (derivative)
|
||||
vec3 spPos = start.xyz + dV*d;
|
||||
progressW = gbufferModelViewInverse[3].xyz+cameraPosition + d*dVWorld;
|
||||
//project into biased shadowmap space
|
||||
#ifdef DISTORT_SHADOWMAP
|
||||
float distortFactor = calcDistort(spPos.xy);
|
||||
#else
|
||||
float distortFactor = 1.0;
|
||||
#endif
|
||||
vec3 pos = vec3(spPos.xy*distortFactor, spPos.z);
|
||||
|
||||
float sh = 1.0;
|
||||
if (abs(pos.x) < 1.0-0.5/2048. && abs(pos.y) < 1.0-0.5/2048){
|
||||
pos = pos*vec3(0.5,0.5,0.5/6.0)+0.5;
|
||||
sh = shadow2D( shadow, pos).x;
|
||||
}
|
||||
|
||||
sh *= GetCloudShadow_VLFOG(progressW, WsunVec);
|
||||
|
||||
|
||||
vec3 sunMul = exp(-max((estSunDepth - dY * d) ,0.0)/abs(refractedSunVec.y) * waterCoefs);
|
||||
vec3 ambientMul = exp(-max(estEyeDepth - dY * d,0.0) * waterCoefs) * 2.0 ;
|
||||
|
||||
float np3_Y = normalize(mat3(gbufferModelViewInverse) * rayEnd).y;
|
||||
float ambfogfade = clamp(exp(np3_Y*1.5 - 1.5),0.0,1.0) ;
|
||||
|
||||
float sunCaustics = clamp(pow(waterCaustics(progressW, WsunVec)+1,5) * 2.0, phase*0.8+0.2, 1.0);
|
||||
|
||||
|
||||
// make it such that the volume is brighter farther away from the camera.
|
||||
float bubbleOfClearness = max(pow(length(d*dVWorld)/16,5)*100.0,0.0) + 1;
|
||||
float bubbleOfClearness2 = max(pow(length(d*dVWorld)/24,5)*100.0,0.0) + 1;
|
||||
|
||||
vec3 Directlight = (lightSource * sunCaustics * phase * (sunMul+0.5)) * sh * pow(abs(WsunVec.y),2) * bubbleOfClearness;
|
||||
vec3 Indirectlight = max(ambient * ambientMul, vec3(0.6,0.6,1.0) * exp(-waterCoefs) * bubbleOfClearness2) * ambfogfade ;
|
||||
|
||||
vec3 light = (Directlight + Indirectlight) * scatterCoef ;
|
||||
|
||||
vL += (light - light * exp(-waterCoefs * dd * rayLength)) / waterCoefs * absorbance;
|
||||
absorbance *= exp(-dd * rayLength * waterCoefs);
|
||||
}
|
||||
inColor += vL;
|
||||
}
|
||||
#endif
|
||||
|
||||
vec4 blueNoise(vec2 coord){
|
||||
return texelFetch2D(colortex6, ivec2(coord)%512 , 0) ;
|
||||
}
|
||||
vec2 R2_samples(int n){
|
||||
vec2 alpha = vec2(0.75487765, 0.56984026);
|
||||
return fract(alpha * n);
|
||||
}
|
||||
|
||||
vec4 waterVolumetrics_test( vec3 rayStart, vec3 rayEnd, float estEndDepth, float estSunDepth, float rayLength, float dither, vec3 waterCoefs, vec3 scatterCoef, vec3 ambient, vec3 lightSource, float VdotL){
|
||||
int spCount = rayMarchSampleCount;
|
||||
|
||||
vec3 start = toShadowSpaceProjected(rayStart);
|
||||
vec3 end = toShadowSpaceProjected(rayEnd);
|
||||
vec3 dV = (end-start);
|
||||
|
||||
//limit ray length at 32 blocks for performance and reducing integration error
|
||||
//you can't see above this anyway
|
||||
float maxZ = min(rayLength,12.0)/(1e-8+rayLength);
|
||||
dV *= maxZ;
|
||||
rayLength *= maxZ;
|
||||
estEndDepth *= maxZ;
|
||||
estSunDepth *= maxZ;
|
||||
|
||||
vec3 wpos = mat3(gbufferModelViewInverse) * rayStart + gbufferModelViewInverse[3].xyz;
|
||||
vec3 dVWorld = (wpos - gbufferModelViewInverse[3].xyz);
|
||||
|
||||
vec3 newabsorbance = exp(-rayLength * waterCoefs); // No need to take the integrated value
|
||||
|
||||
float phase = fogPhase(VdotL) * 5.0;
|
||||
vec3 absorbance = vec3(1.0);
|
||||
vec3 vL = vec3(0.0);
|
||||
|
||||
float expFactor = 11.0;
|
||||
for (int i=0;i<spCount;i++) {
|
||||
float d = (pow(expFactor, float(i+dither)/float(spCount))/expFactor - 1.0/expFactor)/(1-1.0/expFactor);
|
||||
float dd = pow(expFactor, float(i+dither)/float(spCount)) * log(expFactor) / float(spCount)/(expFactor-1.0);
|
||||
vec3 spPos = start.xyz + dV*d;
|
||||
|
||||
vec3 progressW = start.xyz+cameraPosition+dVWorld;
|
||||
|
||||
//project into biased shadowmap space
|
||||
#ifdef DISTORT_SHADOWMAP
|
||||
float distortFactor = calcDistort(spPos.xy);
|
||||
#else
|
||||
float distortFactor = 1.0;
|
||||
#endif
|
||||
|
||||
vec3 pos = vec3(spPos.xy*distortFactor, spPos.z);
|
||||
float sh = 1.0;
|
||||
if (abs(pos.x) < 1.0-0.5/2048. && abs(pos.y) < 1.0-0.5/2048){
|
||||
pos = pos*vec3(0.5,0.5,0.5/6.0)+0.5;
|
||||
sh = shadow2D( shadow, pos).x;
|
||||
}
|
||||
|
||||
// #ifdef VL_CLOUDS_SHADOWS
|
||||
// sh *= GetCloudShadow_VLFOG(progressW,WsunVec);
|
||||
// #endif
|
||||
|
||||
vec3 sunMul = exp(-estSunDepth * d * waterCoefs * 1.1);
|
||||
vec3 ambientMul = exp(-estEndDepth * d * waterCoefs );
|
||||
|
||||
vec3 Directlight = (lightSource * phase * sunMul) * sh;
|
||||
vec3 Indirectlight = ambient * ambientMul;
|
||||
|
||||
vec3 light = (Indirectlight + Directlight) * scatterCoef;
|
||||
|
||||
vL += (light - light * exp(-waterCoefs * dd * rayLength)) / waterCoefs * absorbance;
|
||||
absorbance *= exp(-waterCoefs * dd * rayLength);
|
||||
}
|
||||
// inColor += vL;
|
||||
return vec4( vL, dot(newabsorbance,vec3(0.335)));
|
||||
}
|
||||
//////////////////////////////VOID MAIN//////////////////////////////
|
||||
//////////////////////////////VOID MAIN//////////////////////////////
|
||||
//////////////////////////////VOID MAIN//////////////////////////////
|
||||
//////////////////////////////VOID MAIN//////////////////////////////
|
||||
//////////////////////////////VOID MAIN//////////////////////////////
|
||||
|
||||
|
||||
void main() {
|
||||
/* RENDERTARGETS:13 */
|
||||
|
||||
float noise_1 = R2_dither();
|
||||
float noise_2 = blueNoise();
|
||||
|
||||
vec2 tc = floor(gl_FragCoord.xy)/VL_RENDER_RESOLUTION*texelSize+0.5*texelSize;
|
||||
|
||||
float z = texture2D(depthtex1,tc).x;
|
||||
|
||||
#ifdef DISTANT_HORIZONS
|
||||
float DH_z = texture2D(dhDepthTex1,tc).x;
|
||||
#else
|
||||
float DH_z = 0.0;
|
||||
#endif
|
||||
|
||||
float z0 = texture2D(depthtex0,tc).x;
|
||||
float DH_z0 = texture2D(dhDepthTex,tc).x;
|
||||
|
||||
vec3 viewPos = toScreenSpace_DH(tc/RENDER_SCALE, z, DH_z);
|
||||
vec3 viewPos0 = toScreenSpace_DH(tc/RENDER_SCALE, z0, DH_z0);
|
||||
|
||||
|
||||
// if (isEyeInWater == 1){
|
||||
|
||||
float dirtAmount = Dirt_Amount;
|
||||
vec3 waterEpsilon = vec3(Water_Absorb_R, Water_Absorb_G, Water_Absorb_B);
|
||||
vec3 dirtEpsilon = vec3(Dirt_Absorb_R, Dirt_Absorb_G, Dirt_Absorb_B);
|
||||
vec3 totEpsilon = dirtEpsilon*dirtAmount + waterEpsilon;
|
||||
vec3 scatterCoef = dirtAmount * vec3(Dirt_Scatter_R, Dirt_Scatter_G, Dirt_Scatter_B) / 3.14;
|
||||
|
||||
#ifdef OVERWORLD_SHADER
|
||||
|
||||
float estEyeDepth = 1.0-clamp(eyeBrightnessSmooth.y/240.0,0.,1.0);
|
||||
estEyeDepth = pow(estEyeDepth,3.0) * 32.0;
|
||||
|
||||
float Vdiff = distance(viewPos, viewPos0);
|
||||
float VdotU = 0.5;
|
||||
float estimatedDepth = Vdiff * abs(VdotU) ; //assuming water plane
|
||||
float estimatedSunDepth = estimatedDepth/abs(WsunVec.y); //assuming water plane
|
||||
|
||||
|
||||
vec3 lightColVol = lightCol.rgb / 80.;
|
||||
|
||||
vec3 lightningColor = (lightningEffect / 3) * (max(eyeBrightnessSmooth.y,0)/240.);
|
||||
vec3 ambientColVol = (averageSkyCol/30.0);
|
||||
|
||||
|
||||
vec4 vl = waterVolumetrics_test(vec3(0), viewPos, estimatedDepth, estimatedSunDepth, length(viewPos), noise_1, totEpsilon, scatterCoef, ambientColVol, lightColVol, dot(normalize(viewPos), normalize(sunVec* lightCol.a )) );
|
||||
|
||||
// waterVolumetrics(vl, vec3(0.0), viewPos, estEyeDepth, estEyeDepth, length(viewPos), noise_1, totEpsilon, scatterCoef, ambientColVol, lightColVol*(1.0-pow(1.0-sunElevation*lightCol.a,5.0)) , dot(normalize(viewPos), normalize(sunVec* lightCol.a ) ) );
|
||||
|
||||
gl_FragData[0] = clamp(vl, 0.000001,65000.);
|
||||
#else
|
||||
vec3 fragpos0 = toScreenSpace(vec3(tc,z));
|
||||
vec3 ambientColVol = max(vec3(1.0,0.5,1.0) * 0.6, vec3(0.2,0.4,1.0) * MIN_LIGHT_AMOUNT*0.01);
|
||||
gl_FragData[0].a = 1;
|
||||
waterVolumetrics_notoverworld(gl_FragData[0].rgb, fragpos0, viewPos, 1.0, 1.0, 1.0, blueNoise(), totEpsilon, scatterCoef, ambientColVol);
|
||||
#endif
|
||||
// }
|
||||
}
|
48
shaders/dimensions/deferred3.vsh
Normal file
48
shaders/dimensions/deferred3.vsh
Normal file
@ -0,0 +1,48 @@
|
||||
#include "/lib/settings.glsl"
|
||||
#include "/lib/util.glsl"
|
||||
#include "/lib/res_params.glsl"
|
||||
|
||||
flat varying vec4 lightCol;
|
||||
flat varying vec3 averageSkyCol;
|
||||
|
||||
flat varying vec3 WsunVec;
|
||||
flat varying vec3 refractedSunVec;
|
||||
|
||||
flat varying float tempOffsets;
|
||||
|
||||
uniform sampler2D colortex4;
|
||||
|
||||
uniform float sunElevation;
|
||||
uniform vec3 sunPosition;
|
||||
uniform mat4 gbufferModelViewInverse;
|
||||
uniform int frameCounter;
|
||||
|
||||
|
||||
|
||||
//////////////////////////////VOID MAIN//////////////////////////////
|
||||
//////////////////////////////VOID MAIN//////////////////////////////
|
||||
//////////////////////////////VOID MAIN//////////////////////////////
|
||||
//////////////////////////////VOID MAIN//////////////////////////////
|
||||
//////////////////////////////VOID MAIN//////////////////////////////
|
||||
|
||||
|
||||
uniform float frameTimeCounter;
|
||||
#include "/lib/Shadow_Params.glsl"
|
||||
void main() {
|
||||
gl_Position = ftransform();
|
||||
|
||||
// gl_Position.xy = (gl_Position.xy*0.5+0.5)*0.51*2.0-1.0;
|
||||
gl_Position.xy = (gl_Position.xy*0.5+0.5)*(0.01+VL_RENDER_RESOLUTION)*2.0-1.0;
|
||||
|
||||
tempOffsets = HaltonSeq2(frameCounter%10000);
|
||||
|
||||
averageSkyCol = texelFetch2D(colortex4,ivec2(1,37),0).rgb;
|
||||
|
||||
lightCol.a = float(sunElevation > 1e-5)*2.0 - 1.0;
|
||||
lightCol.rgb = texelFetch2D(colortex4,ivec2(6,37),0).rgb;
|
||||
|
||||
WsunVec = lightCol.a * normalize(mat3(gbufferModelViewInverse) * sunPosition);
|
||||
// WsunVec = normalize(LightDir);
|
||||
|
||||
refractedSunVec = refract(WsunVec, -vec3(0.0,1.0,0.0), 1.0/1.33333);
|
||||
}
|
@ -6,6 +6,7 @@ uniform sampler2D colortex7;
|
||||
uniform vec2 texelSize;
|
||||
uniform float frameTimeCounter;
|
||||
|
||||
uniform sampler2D shadow;
|
||||
uniform sampler2D shadowcolor0;
|
||||
uniform sampler2D shadowcolor1;
|
||||
uniform sampler2D shadowtex0;
|
||||
@ -121,6 +122,20 @@ void applyColorCurve(inout vec3 color, vec4 darks, vec4 brights){
|
||||
}
|
||||
#endif
|
||||
|
||||
//float3 crosstalk_and_saturation(float3 color){
|
||||
//
|
||||
// float crosstalk = 0.0;
|
||||
// float saturation = 0.0
|
||||
//
|
||||
// float luminance = dot(COLOR, vec3(0.21, 0.72, 0.07));
|
||||
//
|
||||
// float3 difference = color - luminance;
|
||||
//
|
||||
// color = color + difference*(-luminance*crosstalk + saturation);
|
||||
//
|
||||
// return color;
|
||||
//}
|
||||
|
||||
uniform int hideGUI;
|
||||
void main() {
|
||||
#ifdef BICUBIC_UPSCALING
|
||||
@ -165,7 +180,6 @@ void main() {
|
||||
gl_FragColor.rgb = FINAL_COLOR;
|
||||
|
||||
|
||||
// vec2 texrood = texcoord * vec2(2.0, 1.0) - vec2(1.0, 0.0);
|
||||
// if(texcoord.x > 0.5) gl_FragColor.rgb = texture2D(shadowcolor0, texrood).rgb;
|
||||
// if(texcoord.x > 0.5) gl_FragColor.rgb = texture2D(shadowcolor0, texcoord * vec2(2.0, 1.0) - vec2(1.0, 0.0)).rgb * vec3(1.0);
|
||||
|
||||
}
|
||||
|
436
shaders/dimensions/fogBehindTranslucent_pass.fsh
Normal file
436
shaders/dimensions/fogBehindTranslucent_pass.fsh
Normal file
@ -0,0 +1,436 @@
|
||||
#include "/lib/settings.glsl"
|
||||
|
||||
flat varying vec4 lightCol;
|
||||
flat varying vec3 averageSkyCol;
|
||||
flat varying vec3 averageSkyCol_Clouds;
|
||||
|
||||
uniform sampler2D noisetex;
|
||||
uniform sampler2D depthtex0;
|
||||
uniform sampler2D depthtex1;
|
||||
uniform sampler2D dhDepthTex;
|
||||
uniform sampler2D dhDepthTex1;
|
||||
|
||||
uniform sampler2D colortex2;
|
||||
uniform sampler2D colortex3;
|
||||
// uniform sampler2D colortex4;
|
||||
uniform sampler2D colortex6;
|
||||
uniform sampler2D colortex7;
|
||||
uniform sampler2D colortex14;
|
||||
|
||||
flat varying vec3 WsunVec;
|
||||
uniform vec3 sunVec;
|
||||
uniform float sunElevation;
|
||||
|
||||
// uniform float far;
|
||||
uniform float dhFarPlane;
|
||||
uniform float dhNearPlane;
|
||||
|
||||
uniform int frameCounter;
|
||||
uniform float frameTimeCounter;
|
||||
|
||||
// varying vec2 texcoord;
|
||||
uniform vec2 texelSize;
|
||||
// flat varying vec2 TAA_Offset;
|
||||
|
||||
uniform int isEyeInWater;
|
||||
uniform float rainStrength;
|
||||
uniform ivec2 eyeBrightnessSmooth;
|
||||
uniform float eyeAltitude;
|
||||
|
||||
#define DHVLFOG
|
||||
#define diagonal3(m) vec3((m)[0].x, (m)[1].y, m[2].z)
|
||||
#define projMAD(m, v) (diagonal3(m) * (v) + (m)[3].xyz)
|
||||
|
||||
#include "/lib/color_transforms.glsl"
|
||||
#include "/lib/color_dither.glsl"
|
||||
#include "/lib/projections.glsl"
|
||||
#include "/lib/res_params.glsl"
|
||||
#include "/lib/sky_gradient.glsl"
|
||||
#include "/lib/Shadow_Params.glsl"
|
||||
#include "/lib/waterBump.glsl"
|
||||
|
||||
#include "/lib/DistantHorizons_projections.glsl"
|
||||
|
||||
float DH_ld(float dist) {
|
||||
return (2.0 * dhNearPlane) / (dhFarPlane + dhNearPlane - dist * (dhFarPlane - dhNearPlane));
|
||||
}
|
||||
float DH_inv_ld (float lindepth){
|
||||
return -((2.0*dhNearPlane/lindepth)-dhFarPlane-dhNearPlane)/(dhFarPlane-dhNearPlane);
|
||||
}
|
||||
|
||||
float linearizeDepthFast(const in float depth, const in float near, const in float far) {
|
||||
return (near * far) / (depth * (near - far) + far);
|
||||
}
|
||||
|
||||
|
||||
#ifdef OVERWORLD_SHADER
|
||||
const bool shadowHardwareFiltering = true;
|
||||
uniform sampler2DShadow shadow;
|
||||
|
||||
flat varying vec3 refractedSunVec;
|
||||
|
||||
#define TIMEOFDAYFOG
|
||||
#include "/lib/lightning_stuff.glsl"
|
||||
#include "/lib/volumetricClouds.glsl"
|
||||
#include "/lib/overworld_fog.glsl"
|
||||
#endif
|
||||
#ifdef NETHER_SHADER
|
||||
uniform sampler2D colortex4;
|
||||
#include "/lib/nether_fog.glsl"
|
||||
#endif
|
||||
#ifdef END_SHADER
|
||||
uniform sampler2D colortex4;
|
||||
#include "/lib/end_fog.glsl"
|
||||
#endif
|
||||
|
||||
#define fsign(a) (clamp((a)*1e35,0.,1.)*2.-1.)
|
||||
|
||||
float interleaved_gradientNoise(){
|
||||
return fract(52.9829189*fract(0.06711056*gl_FragCoord.x + 0.00583715*gl_FragCoord.y)+ 1.0/1.6180339887 * frameCounter);
|
||||
}
|
||||
float blueNoise(){
|
||||
return fract(texelFetch2D(noisetex, ivec2(gl_FragCoord.xy)%512, 0).a+ 1.0/1.6180339887 * frameCounter );
|
||||
}
|
||||
float R2_dither(){
|
||||
#ifdef TAA
|
||||
vec2 coord = gl_FragCoord.xy + (frameCounter%40000) * 2.0;
|
||||
#else
|
||||
vec2 coord = gl_FragCoord.xy;
|
||||
#endif
|
||||
vec2 alpha = vec2(0.75487765, 0.56984026);
|
||||
return fract(alpha.x * coord.x + alpha.y * coord.y ) ;
|
||||
}
|
||||
|
||||
void waterVolumetrics_notoverworld(inout vec3 inColor, vec3 rayStart, vec3 rayEnd, float estEndDepth, float estSunDepth, float rayLength, float dither, vec3 waterCoefs, vec3 scatterCoef, vec3 ambient){
|
||||
inColor *= exp(-rayLength * waterCoefs); //No need to take the integrated value
|
||||
|
||||
int spCount = rayMarchSampleCount;
|
||||
vec3 start = toShadowSpaceProjected(rayStart);
|
||||
vec3 end = toShadowSpaceProjected(rayEnd);
|
||||
vec3 dV = (end-start);
|
||||
//limit ray length at 32 blocks for performance and reducing integration error
|
||||
//you can't see above this anyway
|
||||
float maxZ = min(rayLength,12.0)/(1e-8+rayLength);
|
||||
dV *= maxZ;
|
||||
|
||||
|
||||
rayLength *= maxZ;
|
||||
|
||||
float dY = normalize(mat3(gbufferModelViewInverse) * rayEnd).y * rayLength;
|
||||
estEndDepth *= maxZ;
|
||||
estSunDepth *= maxZ;
|
||||
|
||||
vec3 wpos = mat3(gbufferModelViewInverse) * rayStart + gbufferModelViewInverse[3].xyz;
|
||||
vec3 dVWorld = (wpos-gbufferModelViewInverse[3].xyz);
|
||||
|
||||
vec3 absorbance = vec3(1.0);
|
||||
vec3 vL = vec3(0.0);
|
||||
|
||||
float expFactor = 11.0;
|
||||
for (int i=0;i<spCount;i++) {
|
||||
float d = (pow(expFactor, float(i+dither)/float(spCount))/expFactor - 1.0/expFactor)/(1-1.0/expFactor);
|
||||
float dd = pow(expFactor, float(i+dither)/float(spCount)) * log(expFactor) / float(spCount)/(expFactor-1.0);
|
||||
vec3 spPos = start.xyz + dV*d;
|
||||
|
||||
vec3 progressW = start.xyz+cameraPosition+dVWorld;
|
||||
|
||||
vec3 ambientMul = exp(-max(estEndDepth * d,0.0) * waterCoefs );
|
||||
vec3 Indirectlight = ambientMul*ambient;
|
||||
|
||||
vec3 light = Indirectlight * scatterCoef;
|
||||
|
||||
vL += (light - light * exp(-waterCoefs * dd * rayLength)) / waterCoefs * absorbance;
|
||||
absorbance *= exp(-dd * rayLength * waterCoefs);
|
||||
}
|
||||
inColor += vL;
|
||||
|
||||
}
|
||||
|
||||
#ifdef OVERWORLD_SHADER
|
||||
// float waterCaustics(vec3 wPos, vec3 lightSource) { // water waves
|
||||
|
||||
// vec2 pos = wPos.xz + (lightSource.xz/lightSource.y*wPos.y);
|
||||
// if(isEyeInWater==1) pos = wPos.xz - (lightSource.xz/lightSource.y*wPos.y); // fix the fucky
|
||||
// vec2 movement = vec2(-0.035*frameTimeCounter);
|
||||
// float caustic = 0.0;
|
||||
// float weightSum = 0.0;
|
||||
// float radiance = 2.39996;
|
||||
// mat2 rotationMatrix = mat2(vec2(cos(radiance), -sin(radiance)), vec2(sin(radiance), cos(radiance)));
|
||||
|
||||
// const vec2 wave_size[4] = vec2[](
|
||||
// vec2(64.),
|
||||
// vec2(32.,16.),
|
||||
// vec2(16.,32.),
|
||||
// vec2(48.)
|
||||
// );
|
||||
|
||||
// for (int i = 0; i < 4; i++){
|
||||
// pos = rotationMatrix * pos;
|
||||
|
||||
// vec2 speed = movement;
|
||||
// float waveStrength = 1.0;
|
||||
|
||||
// if( i == 0) {
|
||||
// speed *= 0.15;
|
||||
// waveStrength = 2.0;
|
||||
// }
|
||||
|
||||
// float small_wave = texture2D(noisetex, pos / wave_size[i] + speed ).b * waveStrength;
|
||||
|
||||
// caustic += max( 1.0-sin( 1.0-pow( 0.5+sin( small_wave*3.0 )*0.5, 25.0) ), 0);
|
||||
|
||||
// weightSum -= exp2(caustic*0.1);
|
||||
// }
|
||||
// return caustic / weightSum;
|
||||
// }
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
// void waterVolumetrics(inout vec3 inColor, vec3 rayStart, vec3 rayEnd, float estEyeDepth, float estSunDepth, float rayLength, float dither, vec3 waterCoefs, vec3 scatterCoef, vec3 ambient, vec3 lightSource, float VdotL){
|
||||
// int spCount = 8;
|
||||
|
||||
// vec3 start = toShadowSpaceProjected(rayStart);
|
||||
// vec3 end = toShadowSpaceProjected(rayEnd);
|
||||
// vec3 dV = (end-start);
|
||||
|
||||
// //limit ray length at 32 blocks for performance and reducing integration error
|
||||
// //you can't see above this anyway
|
||||
// float maxZ = min(rayLength,32.0)/(1e-8+rayLength);
|
||||
// dV *= maxZ;
|
||||
// vec3 dVWorld = mat3(gbufferModelViewInverse) * (rayEnd - rayStart) * maxZ;
|
||||
// rayLength *= maxZ;
|
||||
// float dY = normalize(mat3(gbufferModelViewInverse) * rayEnd).y * rayLength;
|
||||
|
||||
// vec3 progressW = gbufferModelViewInverse[3].xyz+cameraPosition;
|
||||
|
||||
// float phase = fogPhase(VdotL) * 5.0;
|
||||
// vec3 absorbance = vec3(1.0);
|
||||
// vec3 vL = vec3(0.0);
|
||||
|
||||
// float YFade = pow(normalize(dVWorld).y*0.5+0.6,1.5);
|
||||
// // float YFade = pow(max(normalize(dVWorld).y,0.0)*0.5+0.5,2);
|
||||
|
||||
// float lowlightlevel = clamp(eyeBrightnessSmooth.y/240.0,0.2,1.0);
|
||||
// float lowlightlevel2 = clamp(eyeBrightnessSmooth.y/240.0,0.02,1.0);
|
||||
// // lowlightlevel = pow(lowlightlevel,0.5);
|
||||
|
||||
// float expFactor = 11.0;
|
||||
// for (int i=0;i<spCount;i++) {
|
||||
// float d = (pow(expFactor, float(i+dither)/float(spCount))/expFactor - 1.0/expFactor)/(1-1.0/expFactor); // exponential step position (0-1)
|
||||
// float dd = pow(expFactor, float(i+dither)/float(spCount)) * log(expFactor) / float(spCount)/(expFactor-1.0); //step length (derivative)
|
||||
// vec3 spPos = start.xyz + dV*d;
|
||||
// progressW = gbufferModelViewInverse[3].xyz+cameraPosition + d*dVWorld;
|
||||
// //project into biased shadowmap space
|
||||
// #ifdef DISTORT_SHADOWMAP
|
||||
// float distortFactor = calcDistort(spPos.xy);
|
||||
// #else
|
||||
// float distortFactor = 1.0;
|
||||
// #endif
|
||||
// vec3 pos = vec3(spPos.xy*distortFactor, spPos.z);
|
||||
// float sh = 1.0;
|
||||
// if (abs(pos.x) < 1.0-0.5/2048. && abs(pos.y) < 1.0-0.5/2048){
|
||||
// pos = pos*vec3(0.5,0.5,0.5/6.0)+0.5;
|
||||
// sh = shadow2D( shadow, pos).x;
|
||||
// }
|
||||
|
||||
// #ifdef VL_CLOUDS_SHADOWS
|
||||
// sh *= GetCloudShadow_VLFOG(progressW,WsunVec);
|
||||
// #endif
|
||||
|
||||
// // float bubble = 1.0 - pow(1.0-pow(1.0-min(max(1.0 - length(d*dVWorld) / (16),0.0)*5.0,1.0),2.0),2.0);
|
||||
// float bubble = exp( -7.0 * clamp(1.0 - length(d*dVWorld) / 16.0, 0.0,1.0) );
|
||||
// float bubble2 = max(pow(length(d*dVWorld)/24,5)*100.0,0.0) + 1;
|
||||
|
||||
|
||||
// float sunCaustics = (waterCaustics(progressW, WsunVec)) * mix(0.25,10.0,bubble) + 0.75;
|
||||
|
||||
// vec3 sunMul = exp(-1 * d * waterCoefs * 1.1);
|
||||
// vec3 ambientMul = exp(-1 * d * waterCoefs);
|
||||
|
||||
// vec3 Directlight = (lightSource * phase * sunMul * sunCaustics) * sh * lowlightlevel * pow(abs(WsunVec.y),1);
|
||||
// vec3 Indirectlight = ambient * ambientMul * lowlightlevel;
|
||||
|
||||
// // vec3 Indirectlight = max(ambient * ambientMul * lowlightlevel, vec3(0.01,0.2,0.4) * YFade * exp(-1.0 * d * waterCoefs));
|
||||
|
||||
// vec3 light = (Indirectlight + Directlight) * scatterCoef;
|
||||
|
||||
// vL += (light - light * exp(-waterCoefs * dd * rayLength)) / waterCoefs * absorbance;
|
||||
// absorbance *= exp(-waterCoefs * dd * rayLength);
|
||||
// }
|
||||
// inColor += vL;
|
||||
// }
|
||||
#endif
|
||||
|
||||
vec4 blueNoise(vec2 coord){
|
||||
return texelFetch2D(colortex6, ivec2(coord)%512 , 0) ;
|
||||
}
|
||||
vec2 R2_samples(int n){
|
||||
vec2 alpha = vec2(0.75487765, 0.56984026);
|
||||
return fract(alpha * n);
|
||||
}
|
||||
|
||||
float fogPhase2(float lightPoint){
|
||||
float linear = 1.0 - clamp(lightPoint*0.5+0.5,0.0,1.0);
|
||||
float linear2 = 1.0 - clamp(lightPoint,0.0,1.0);
|
||||
|
||||
float exponential = exp2(pow(linear,0.3) * -15.0 ) * 1.5;
|
||||
exponential += sqrt(exp2(sqrt(linear) * -12.5));
|
||||
|
||||
return exponential;
|
||||
}
|
||||
|
||||
vec4 waterVolumetrics_test( vec3 rayStart, vec3 rayEnd, float estEndDepth, float estSunDepth, float rayLength, float dither, vec3 waterCoefs, vec3 scatterCoef, vec3 ambient, vec3 lightSource, float VdotL){
|
||||
int spCount = rayMarchSampleCount;
|
||||
|
||||
vec3 start = toShadowSpaceProjected(rayStart);
|
||||
vec3 end = toShadowSpaceProjected(rayEnd);
|
||||
vec3 dV = (end-start);
|
||||
|
||||
//limit ray length at 32 blocks for performance and reducing integration error
|
||||
//you can't see above this anyway
|
||||
float maxZ = min(rayLength,12.0)/(1e-8+rayLength);
|
||||
dV *= maxZ;
|
||||
rayLength *= maxZ;
|
||||
estEndDepth *= maxZ;
|
||||
estSunDepth *= maxZ;
|
||||
|
||||
vec3 wpos = mat3(gbufferModelViewInverse) * rayStart + gbufferModelViewInverse[3].xyz;
|
||||
vec3 dVWorld = (wpos - gbufferModelViewInverse[3].xyz);
|
||||
|
||||
vec3 newabsorbance = exp(-rayLength * waterCoefs); // No need to take the integrated value
|
||||
#ifdef OVERWORLD_SHADER
|
||||
float phase = fogPhase(VdotL) * 5.0;
|
||||
#else
|
||||
float phase = 1.0;
|
||||
#endif
|
||||
vec3 absorbance = vec3(1.0);
|
||||
vec3 vL = vec3(0.0);
|
||||
|
||||
|
||||
float expFactor = 11.0;
|
||||
for (int i=0;i<spCount;i++) {
|
||||
float d = (pow(expFactor, float(i+dither)/float(spCount))/expFactor - 1.0/expFactor)/(1-1.0/expFactor);
|
||||
float dd = pow(expFactor, float(i+dither)/float(spCount)) * log(expFactor) / float(spCount)/(expFactor-1.0);
|
||||
|
||||
vec3 progressW = start.xyz+cameraPosition+dVWorld;
|
||||
|
||||
float sh = 1.0;
|
||||
#ifdef OVERWORLD_SHADER
|
||||
vec3 spPos = start.xyz + dV*d;
|
||||
|
||||
//project into biased shadowmap space
|
||||
#ifdef DISTORT_SHADOWMAP
|
||||
float distortFactor = calcDistort(spPos.xy);
|
||||
#else
|
||||
float distortFactor = 1.0;
|
||||
#endif
|
||||
|
||||
vec3 pos = vec3(spPos.xy*distortFactor, spPos.z);
|
||||
if (abs(pos.x) < 1.0-0.5/2048. && abs(pos.y) < 1.0-0.5/2048){
|
||||
pos = pos*vec3(0.5,0.5,0.5/6.0)+0.5;
|
||||
sh = shadow2D( shadow, pos).x;
|
||||
}
|
||||
|
||||
#ifdef VL_CLOUDS_SHADOWS
|
||||
sh *= GetCloudShadow_VLFOG(progressW,WsunVec);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
vec3 sunMul = exp(-estSunDepth * d * waterCoefs * 1.1);
|
||||
vec3 ambientMul = exp(-estEndDepth * d * waterCoefs );
|
||||
|
||||
vec3 Directlight = (lightSource * phase * sunMul) * sh;
|
||||
vec3 Indirectlight = max(ambient * ambientMul, vec3(0.01,0.2,0.4) * ambientMul * 0.1) ;
|
||||
|
||||
vec3 light = (Indirectlight + Directlight) * scatterCoef;
|
||||
|
||||
vL += (light - light * exp(-waterCoefs * dd * rayLength)) / waterCoefs * absorbance;
|
||||
absorbance *= exp(-waterCoefs * dd * rayLength);
|
||||
}
|
||||
// inColor += vL;
|
||||
return vec4( vL, dot(newabsorbance,vec3(0.335)));
|
||||
}
|
||||
|
||||
//////////////////////////////VOID MAIN//////////////////////////////
|
||||
//////////////////////////////VOID MAIN//////////////////////////////
|
||||
//////////////////////////////VOID MAIN//////////////////////////////
|
||||
//////////////////////////////VOID MAIN//////////////////////////////
|
||||
//////////////////////////////VOID MAIN//////////////////////////////
|
||||
|
||||
|
||||
void main() {
|
||||
/* RENDERTARGETS:13 */
|
||||
|
||||
float noise_1 = R2_dither();
|
||||
float noise_2 = blueNoise();
|
||||
|
||||
|
||||
vec2 tc = floor(gl_FragCoord.xy)/VL_RENDER_RESOLUTION*texelSize+0.5*texelSize;
|
||||
|
||||
bool iswater = texture2D(colortex7,tc).a > 0.99;
|
||||
|
||||
float z0 = texture2D(depthtex0,tc).x;
|
||||
|
||||
#ifdef DISTANT_HORIZONS
|
||||
float DH_z0 = texture2D(dhDepthTex,tc).x;
|
||||
#else
|
||||
float DH_z0 = 0.0;
|
||||
#endif
|
||||
|
||||
float z = texture2D(depthtex1,tc).x;
|
||||
float DH_z = texture2D(dhDepthTex1,tc).x;
|
||||
|
||||
|
||||
vec3 viewPos1 = toScreenSpace_DH(tc/RENDER_SCALE, z, DH_z);
|
||||
vec3 viewPos0 = toScreenSpace_DH(tc/RENDER_SCALE, z0, DH_z0);
|
||||
|
||||
vec3 playerPos = normalize(mat3(gbufferModelViewInverse) * viewPos1);
|
||||
// vec3 lightningColor = (lightningEffect / 3) * (max(eyeBrightnessSmooth.y,0)/240.);
|
||||
|
||||
float dirtAmount = Dirt_Amount + 0.1;
|
||||
vec3 waterEpsilon = vec3(Water_Absorb_R, Water_Absorb_G, Water_Absorb_B);
|
||||
vec3 dirtEpsilon = vec3(Dirt_Absorb_R, Dirt_Absorb_G, Dirt_Absorb_B);
|
||||
vec3 totEpsilon = dirtEpsilon*dirtAmount + waterEpsilon;
|
||||
vec3 scatterCoef = dirtAmount * vec3(Dirt_Scatter_R, Dirt_Scatter_G, Dirt_Scatter_B) / 3.14;
|
||||
|
||||
vec3 directLightColor = lightCol.rgb/80.0;
|
||||
vec3 indirectLightColor = averageSkyCol/30.0;
|
||||
vec3 indirectLightColor_dynamic = averageSkyCol_Clouds/30.0;
|
||||
|
||||
//////////////////////////////////////////////////////////
|
||||
///////////////// BEHIND OF TRANSLUCENTS /////////////////
|
||||
//////////////////////////////////////////////////////////
|
||||
|
||||
// gl_FragData[0] = vec4(0,0,0,1);
|
||||
|
||||
if(texture2D(colortex2, tc).a > 0.0 || iswater){
|
||||
|
||||
#ifdef OVERWORLD_SHADER
|
||||
float lightmap = texture2D(colortex14,tc).a;
|
||||
if(z >= 1.0 ) lightmap = 1.0;
|
||||
#else
|
||||
float lightmap = 1.0;
|
||||
#endif
|
||||
float Vdiff = distance(viewPos1, viewPos0);
|
||||
float VdotU = playerPos.y;
|
||||
float estimatedDepth = Vdiff * abs(VdotU) ; //assuming water plane
|
||||
float estimatedSunDepth = estimatedDepth/abs(WsunVec.y); //assuming water plane
|
||||
|
||||
vec4 VolumetricFog2 = vec4(0,0,0,1);
|
||||
#ifdef OVERWORLD_SHADER
|
||||
if(!iswater) VolumetricFog2 = GetVolumetricFog(viewPos1, vec2(noise_1, noise_2), directLightColor, indirectLightColor);
|
||||
#endif
|
||||
|
||||
vec4 underwaterVlFog = vec4(0,0,0,1);
|
||||
underwaterVlFog = waterVolumetrics_test(viewPos0, viewPos1, estimatedDepth, estimatedSunDepth, Vdiff, noise_1, totEpsilon, scatterCoef, indirectLightColor_dynamic * max(lightmap,0.0), directLightColor, dot(normalize(viewPos1), normalize(sunVec*lightCol.a)) );
|
||||
|
||||
vec4 fogFinal = vec4(underwaterVlFog.rgb * VolumetricFog2.a + VolumetricFog2.rgb, VolumetricFog2.a * underwaterVlFog.a);
|
||||
|
||||
gl_FragData[0] = clamp(fogFinal, 0.0, 65000.0);
|
||||
|
||||
}else{
|
||||
gl_FragData[0] = vec4(0,0,0,1);
|
||||
}
|
||||
}
|
71
shaders/dimensions/fogBehindTranslucent_pass.vsh
Normal file
71
shaders/dimensions/fogBehindTranslucent_pass.vsh
Normal file
@ -0,0 +1,71 @@
|
||||
#include "/lib/settings.glsl"
|
||||
#include "/lib/util.glsl"
|
||||
#include "/lib/res_params.glsl"
|
||||
|
||||
flat varying vec4 lightCol;
|
||||
flat varying vec3 averageSkyCol;
|
||||
flat varying vec3 averageSkyCol_Clouds;
|
||||
|
||||
flat varying vec3 WsunVec;
|
||||
flat varying vec3 refractedSunVec;
|
||||
|
||||
flat varying float tempOffsets;
|
||||
|
||||
uniform sampler2D colortex4;
|
||||
|
||||
uniform float sunElevation;
|
||||
uniform vec2 texelSize;
|
||||
uniform vec3 sunPosition;
|
||||
uniform mat4 gbufferModelViewInverse;
|
||||
uniform int frameCounter;
|
||||
|
||||
|
||||
|
||||
//////////////////////////////VOID MAIN//////////////////////////////
|
||||
//////////////////////////////VOID MAIN//////////////////////////////
|
||||
//////////////////////////////VOID MAIN//////////////////////////////
|
||||
//////////////////////////////VOID MAIN//////////////////////////////
|
||||
//////////////////////////////VOID MAIN//////////////////////////////
|
||||
|
||||
|
||||
uniform float frameTimeCounter;
|
||||
#include "/lib/Shadow_Params.glsl"
|
||||
#include "/lib/sky_gradient.glsl"
|
||||
|
||||
void main() {
|
||||
gl_Position = ftransform();
|
||||
|
||||
// gl_Position.xy = (gl_Position.xy*0.5+0.5)*0.51*2.0-1.0;
|
||||
gl_Position.xy = (gl_Position.xy*0.5+0.5)*(0.01+VL_RENDER_RESOLUTION)*2.0-1.0;
|
||||
|
||||
#ifdef TAA
|
||||
tempOffsets = HaltonSeq2(frameCounter%10000);
|
||||
#else
|
||||
tempOffsets = 0.0;
|
||||
#endif
|
||||
|
||||
#ifdef OVERWORLD_SHADER
|
||||
lightCol.rgb = texelFetch2D(colortex4,ivec2(6,37),0).rgb;
|
||||
averageSkyCol = texelFetch2D(colortex4,ivec2(1,37),0).rgb;
|
||||
averageSkyCol_Clouds = texelFetch2D(colortex4,ivec2(0,37),0).rgb;
|
||||
#endif
|
||||
|
||||
#ifdef NETHER_SHADER
|
||||
lightCol.rgb = vec3(0.0);
|
||||
averageSkyCol = vec3(0.0);
|
||||
averageSkyCol_Clouds = vec3(2.0, 1.0, 0.5) * 30.0;
|
||||
#endif
|
||||
|
||||
#ifdef END_SHADER
|
||||
lightCol.rgb = vec3(0.0);
|
||||
averageSkyCol = vec3(0.0);
|
||||
averageSkyCol_Clouds = vec3(5.0);
|
||||
#endif
|
||||
|
||||
|
||||
lightCol.a = float(sunElevation > 1e-5)*2.0 - 1.0;
|
||||
WsunVec = lightCol.a * normalize(mat3(gbufferModelViewInverse) * sunPosition);
|
||||
// WsunVec = normalize(LightDir);
|
||||
|
||||
refractedSunVec = refract(WsunVec, -vec3(0.0,1.0,0.0), 1.0/1.33333);
|
||||
}
|
Reference in New Issue
Block a user