re-implement "render fog with clouds" option.

This commit is contained in:
Xonk
2023-12-26 19:57:30 -05:00
parent 993c57a34a
commit 2d64880893
10 changed files with 203 additions and 170 deletions

View File

@ -62,7 +62,193 @@ float fogPhase(float lightPoint){
return exponential;
}
vec4 GetVolumetricFog(
vec3 viewPosition,
vec2 dither,
vec3 LightColor,
vec3 AmbientColor
){
/// ------------- RAYMARCHING STUFF ------------- \\\
//project pixel position into projected shadowmap space
vec3 wpos = mat3(gbufferModelViewInverse) * viewPosition + gbufferModelViewInverse[3].xyz;
vec3 fragposition = mat3(shadowModelView) * wpos + shadowModelView[3].xyz;
fragposition = diagonal3(shadowProjection) * fragposition + shadowProjection[3].xyz;
//project view origin into projected shadowmap space
vec3 start = toShadowSpaceProjected(vec3(0.0));
//rayvector into projected shadow map space
//we can use a projected vector because its orthographic projection
//however we still have to send it to curved shadow map space every step
vec3 dV = fragposition - start;
vec3 dVWorld = (wpos-gbufferModelViewInverse[3].xyz);
float maxLength = min(length(dVWorld), far)/length(dVWorld);
dV *= maxLength;
dVWorld *= maxLength;
float dL = length(dVWorld);
float mult = length(dVWorld)/25;
vec3 progress = start.xyz;
vec3 progressW = gbufferModelViewInverse[3].xyz + cameraPosition;
vec3 WsunVec = mat3(gbufferModelViewInverse) * sunVec * lightCol.a;
float SdotV = dot(sunVec,normalize(viewPosition))*lightCol.a;
/// ------------- COLOR/LIGHTING STUFF ------------- \\\
vec3 color = vec3(0.0);
vec3 absorbance = vec3(1.0);
///// ----- fog lighting
//Mie phase + somewhat simulates multiple scattering (Horizon zero down cloud approx)
float mie = fogPhase(SdotV) * 5.0;
float rayL = phaseRayleigh(SdotV);
vec3 rC = vec3(fog_coefficientRayleighR*1e-6, fog_coefficientRayleighG*1e-5, fog_coefficientRayleighB*1e-5);
vec3 mC = vec3(fog_coefficientMieR*1e-6, fog_coefficientMieG*1e-6, fog_coefficientMieB*1e-6);
vec3 LightSourceColor = LightColor;
#ifdef ambientLight_only
LightSourceColor = vec3(0.0);
#endif
vec3 skyCol0 = AmbientColor;
#ifdef PER_BIOME_ENVIRONMENT
BiomeFogColor(LightSourceColor);
BiomeFogColor(skyCol0);
#endif
skyCol0 = max(skyCol0 + skyCol0*(normalize(wpos).y*0.9+0.1),0.0);
float lightleakfix = clamp(pow(eyeBrightnessSmooth.y/240.,2) ,0.0,1.0);
#ifdef RAYMARCH_CLOUDS_WITH_FOG
///// ----- cloud stuff
// first cloud layer
float MinHeight_0 = Cumulus_height;
float MaxHeight_0 = 100 + MinHeight_0;
// second cloud layer
float MinHeight_1 = MaxHeight_0 + 50;
float MaxHeight_1 = 100 + MinHeight_1;
vec3 SkyColor = AmbientColor;
float shadowStep = 200.0;
vec3 dV_Sun = WsunVec*shadowStep;
float mieDay = phaseg(SdotV, 0.75);
float mieDayMulti = (phaseg(SdotV, 0.35) + phaseg(-SdotV, 0.35) * 0.5) ;
vec3 directScattering = LightColor * mieDay * 3.14;
vec3 directMultiScattering = LightColor * mieDayMulti * 4.0;
vec3 sunIndirectScattering = LightColor * phaseg(dot(mat3(gbufferModelView)*vec3(0,1,0),normalize(viewPosition)), 0.5) * 3.14;
#endif
float expFactor = 11.0;
for (int i=0;i<VL_SAMPLES;i++) {
float d = (pow(expFactor, float(i+dither.x)/float(VL_SAMPLES))/expFactor - 1.0/expFactor)/(1-1.0/expFactor);
float dd = pow(expFactor, float(i+dither.x)/float(VL_SAMPLES)) * log(expFactor) / float(VL_SAMPLES)/(expFactor-1.0);
progress = start.xyz + d*dV;
progressW = gbufferModelViewInverse[3].xyz+cameraPosition + d*dVWorld;
//project into biased shadowmap space
float distortFactor = calcDistort(progress.xy);
vec3 pos = vec3(progress.xy*distortFactor, progress.z);
float sh = 1.0;
if (abs(pos.x) < 1.0-0.5/2048. && abs(pos.y) < 1.0-0.5/2048){
pos = pos*vec3(0.5,0.5,0.5/6.0)+0.5;
sh = shadow2D(shadow, pos).x;
}
float sh2 = sh;
#ifdef VL_CLOUDS_SHADOWS
sh *= GetCloudShadow_VLFOG(progressW, WsunVec);
#endif
float densityVol = cloudVol(progressW) * lightleakfix;
//Water droplets(fog)
float density = densityVol*300.0;
///// ----- main fog lighting
//Just air
vec2 airCoef = exp(-max(progressW.y - SEA_LEVEL, 0.0) / vec2(8.0e3, 1.2e3) * vec2(6.,7.0)) * 24 * Haze_amount;
//Pbr for air, yolo mix between mie and rayleigh for water droplets
vec3 rL = rC*airCoef.x;
vec3 m = (airCoef.y+density) * mC;
vec3 AtmosphericFog = skyCol0 * (rL*3.0 + m);
vec3 DirectLight = (LightSourceColor*sh) * (rayL*rL*3.0 + m*mie);
vec3 AmbientLight = skyCol0 * m;
vec3 Lightning = Iris_Lightningflash_VLfog(progressW-cameraPosition, lightningBoltPosition.xyz) * m;
vec3 lighting = (AtmosphericFog + AmbientLight + DirectLight + Lightning) * lightleakfix;
color += max(lighting - lighting * exp(-(rL+m)*dd*dL),0.0) / max(rL+m, 0.00000001)*absorbance;
absorbance *= max(exp(-(rL+m)*dd*dL),0.0);
#ifdef RAYMARCH_CLOUDS_WITH_FOG
//////////////////////////////////////////
///// ----- cloud part
//////////////////////////////////////////
// determine the base of each cloud layer
bool isUpperLayer = max(progressW.y - MinHeight_1,0.0) > 0.0;
float CloudBaseHeights = isUpperLayer ? 200.0 + MaxHeight_0 : MaxHeight_0;
float curvature = pow(clamp(1.0 - length(progressW)/far,0,1),2) * 50;
float cumulus = GetCumulusDensity(progressW, 1, MinHeight_0, MaxHeight_0);
float fadedDensity = Cumulus_density * clamp(exp( (progressW.y - (CloudBaseHeights - 70)) / 9.0 ),0.0,1.0);
if(cumulus > 1e-5){
float muE = cumulus*fadedDensity;
float directLight = 0.0;
for (int j=0; j < 3; j++){
vec3 shadowSamplePos = progressW + dV_Sun * (0.1 + j * (0.1 + dither.y*0.05));
float shadow = GetCumulusDensity(shadowSamplePos, 0, MinHeight_0, MaxHeight_0) * Cumulus_density;
directLight += shadow;
}
if(max(progressW.y - MaxHeight_1 + 50,0.0) < 1.0) directLight += Cumulus_density * 2.0 * GetCumulusDensity(progressW + dV_Sun/abs(dV_Sun.y) * max((MaxHeight_1 - 30.0) - progressW.y,0.0), 0, MinHeight_0, MaxHeight_0);
float upperLayerOcclusion = !isUpperLayer ? Cumulus_density * 2.0 * GetCumulusDensity(progressW + vec3(0.0,1.0,0.0) * max((MaxHeight_1 - 30.0) - progressW.y,0.0), 0, MinHeight_0, MaxHeight_0) : 0.0;
float skylightOcclusion = max(exp2((upperLayerOcclusion*upperLayerOcclusion) * -5), 0.75);
float skyScatter = clamp((CloudBaseHeights - 20 - progressW.y) / 275.0,0.0,1.0);
vec3 Lighting = DoCloudLighting(muE, cumulus, SkyColor*skylightOcclusion, skyScatter, directLight, directScattering*sh2, directMultiScattering*sh2, 1);
// a horrible approximation of direct light indirectly hitting the lower layer of clouds after scattering through/bouncing off the upper layer.
Lighting += sunIndirectScattering * exp((skyScatter*skyScatter) * cumulus * -35.0) * upperLayerOcclusion * exp(-20.0 * pow(abs(upperLayerOcclusion - 0.3),2));
color += max(Lighting - Lighting*exp(-muE*dd*dL),0.0) * absorbance;
absorbance *= max(exp(-muE*dd*dL),0.0);
}
#endif /// VL CLOUDS
}
return vec4(color, min(dot(absorbance,vec3(0.335)),1.0));
}
/*
// uniform bool inSpecialBiome;
vec4 GetVolumetricFog(
vec3 viewPosition,
@ -173,159 +359,4 @@ vec4 GetVolumetricFog(
}
return vec4(color, dot(absorbance,vec3(0.333333)));
}
/*
/// experimental functions to render clouds and fog in 2 passes
float cloudCoverage(in vec3 pos, float minHeight, float maxHeight){
float FinalCloudCoverage = 0.0;
vec3 playerPos = pos - cameraPosition;
vec3 samplePos = pos*vec3(1.0,1./48.,1.0)/4;
// minHeight -= curvature; maxHeight -= curvature;
float thingy = pow(1.0-clamp(1.0-length(playerPos)/2000,0,1),2) * 2.0;
float CloudLarge = texture2D(noisetex, (samplePos.xz+ cloud_movement)/5000.0).b;
float CloudSmall = texture2D(noisetex, (samplePos.xz- cloud_movement)/500.0).r;
float coverage = abs(CloudLarge*2.0 - 1.2)*0.5 - (1.0-CloudSmall);
/////// FIRST LAYER
float layer0 = min(min(coverage + max(Cumulus_coverage,thingy), clamp(maxHeight - pos.y,0,1)), 1.0 - clamp(minHeight - pos.y,0,1));
float Topshape = max(pos.y - (maxHeight - 75),0.0) / 200.0;
Topshape += max(pos.y - (maxHeight - 10),0.0) / 50.0;
float Baseshape = max(minHeight + 12.5 - pos.y, 0.0) / 50.0;
FinalCloudCoverage += max(layer0 - Topshape - Baseshape,0.0);
float erosion = 1.0 - densityAtPos(samplePos * 200);
float noise = erosion * (1.0-FinalCloudCoverage) ;
FinalCloudCoverage = max(FinalCloudCoverage - noise*noise*0.5, 0.0);
return FinalCloudCoverage;
}
vec4 renderVolumetrics(
vec3 viewPosition,
vec2 dither,
vec3 directLightColor,
vec3 skyLightColor
){
int SAMPLES = 30;
vec3 color = vec3(0.0);
float absorbance = 1.0;
vec3 wpos = mat3(gbufferModelViewInverse) * viewPosition + gbufferModelViewInverse[3].xyz;
vec3 fragposition = mat3(shadowModelView) * wpos + shadowModelView[3].xyz;
fragposition = diagonal3(shadowProjection) * fragposition + shadowProjection[3].xyz;
//////////////////////////////////////////
////// lighting stuff
//////////////////////////////////////////
float shadowStep = 200.0;
vec3 dV_Sun = WsunVec*shadowStep;
float SdotV = dot(mat3(gbufferModelView)*WsunVec,normalize(viewPosition));
// if(dV_Sun.y/shadowStep < -0.1) dV_Sun = -dV_Sun;
float mieDay = phaseg(SdotV, 0.75);
float mieDayMulti = (phaseg(SdotV, 0.35) + phaseg(-SdotV, 0.35) * 0.5) ;
vec3 sunScattering = directLightColor * mieDay * 3.14;
vec3 sunMultiScattering = directLightColor * mieDayMulti * 4.0;
//////////////////////////////////////////
////// raymarching stuff
//////////////////////////////////////////
//project view origin into projected shadowmap space
vec3 start = toShadowSpaceProjected(vec3(0.0));
vec3 dV = fragposition - start;
// vec3 dVWorld = (wpos - gbufferModelViewInverse[3].xyz);
vec3 dVWorld = (wpos - gbufferModelViewInverse[3].xyz);
// float maxLength = min(length(dVWorld), far)/length(dVWorld);
float maxLength = 1.0;
dV *= maxLength;
dVWorld *= maxLength;
float dL = length(dVWorld);
float minCloudHeight = Cumulus_height;
float maxCloudHeight = minCloudHeight + 100;
float expFactor = 11.0;
vec3 progress = start.xyz;
vec3 progressW = gbufferModelViewInverse[3].xyz + cameraPosition;
float heightRelativeToClouds = clamp(1.0 - max(eyeAltitude - (Cumulus_height),0.0) / 100.0 ,0.0,1.0);
for (int i=0; i < SAMPLES; i++) {
float d = (pow(expFactor, float(i+dither.x)/float(SAMPLES))/expFactor - 1.0/expFactor)/(1.0-1.0/expFactor);
float dd = pow(expFactor, float(i+dither.x)/float(SAMPLES)) * log(expFactor) / float(SAMPLES)/(expFactor-1.0);
progress = start.xyz + d*dV;
// progressW = gbufferModelViewInverse[3].xyz + cameraPosition + d*dVWorld;
progressW = gbufferModelViewInverse[3].xyz + cameraPosition + d*dVWorld;
float curvature = pow(length(progressW-cameraPosition)/200.0,2.0) * heightRelativeToClouds ;
minCloudHeight -= curvature; maxCloudHeight -= curvature;
//project into biased shadowmap space
float distortFactor = calcDistort(progress.xy);
vec3 pos = vec3(progress.xy*distortFactor, progress.z);
float sh = 1.0;
if (abs(pos.x) < 1.0-0.5/2048. && abs(pos.y) < 1.0-0.5/2048){
pos = pos*vec3(0.5,0.5,0.5/6.0)+0.5;
sh = shadow2D(shadow, pos).x;
}
float cloud = cloudCoverage(progressW, minCloudHeight, maxCloudHeight);
float UniformFog = clamp(1.0 - (progressW.y-minCloudHeight-100) / 200,0.0,1.0);
float density = max(cloud, (UniformFog*UniformFog) * 0.00);
float horizonfalloff = exp(-(1.0-clamp(normalize(progressW-vec3(cameraPosition.x,0.0,cameraPosition.x)).y+1.0,0,1)));
sunScattering *= horizonfalloff;
sunMultiScattering *= horizonfalloff;
// if(density > 1e-5){
float muE = density * 0.5;
float sunLight = 0.0;
for (int j=0; j < 3; j++){
vec3 shadowSamplePos = progressW + dV_Sun * (0.1 + j * (0.1 + dither.y*0.05));
float shadow = cloudCoverage(shadowSamplePos, minCloudHeight, maxCloudHeight) * 0.5;
sunLight += shadow;
}
sunLight += 2*cloudCoverage(progressW + dV_Sun/abs(dV_Sun.y) * max(minCloudHeight+20 - progressW.y,0.0), minCloudHeight, maxCloudHeight) * exp(-10*cloud);
vec3 lighting = skyLightColor + (sunScattering*exp(-5 * sunLight) + sunMultiScattering*exp(-3 * sunLight)) * sh;
color += max(lighting - lighting*exp(-muE*dd*dL),0.0) * absorbance;
absorbance *= max(exp(-muE*dd*dL),0.0);
if (absorbance < 1e-5) break;
}
return vec4(color, absorbance);
}
*/

View File

@ -323,7 +323,7 @@ uniform int moonPhase;
#define CLOUDS_QUALITY 0.5 // [0.1 0.125 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.9 1.0]
#ifdef VOLUMETRIC_CLOUDS
#define Cloud_Fog
#define RAYMARCH_CLOUDS_WITH_FOG
#ifndef ambientLight_only
#define CLOUDS_SHADOWS

View File

@ -103,6 +103,8 @@ vec4 texture2D_bicubic_offset(sampler2D tex, vec2 uv, float noise)
{
float offsets = noise * (2.0 * 3.141592653589793238462643383279502884197169);
vec2 circleOffsets = vec2(sin(offsets), cos(offsets));
// circleOffsets = vec2(0.0);
vec4 texelSize = vec4(texelSize,1.0/texelSize);
uv = uv*texelSize.zw;