mirror of
https://github.com/X0nk/Bliss-Shader.git
synced 2025-06-22 08:42:50 +08:00
re-implement "render fog with clouds" option.
This commit is contained in:
@ -62,7 +62,193 @@ float fogPhase(float lightPoint){
|
||||
return exponential;
|
||||
}
|
||||
|
||||
vec4 GetVolumetricFog(
|
||||
vec3 viewPosition,
|
||||
vec2 dither,
|
||||
vec3 LightColor,
|
||||
vec3 AmbientColor
|
||||
){
|
||||
|
||||
/// ------------- RAYMARCHING STUFF ------------- \\\
|
||||
|
||||
//project pixel position into projected shadowmap space
|
||||
vec3 wpos = mat3(gbufferModelViewInverse) * viewPosition + gbufferModelViewInverse[3].xyz;
|
||||
vec3 fragposition = mat3(shadowModelView) * wpos + shadowModelView[3].xyz;
|
||||
fragposition = diagonal3(shadowProjection) * fragposition + shadowProjection[3].xyz;
|
||||
|
||||
//project view origin into projected shadowmap space
|
||||
vec3 start = toShadowSpaceProjected(vec3(0.0));
|
||||
|
||||
//rayvector into projected shadow map space
|
||||
//we can use a projected vector because its orthographic projection
|
||||
//however we still have to send it to curved shadow map space every step
|
||||
vec3 dV = fragposition - start;
|
||||
vec3 dVWorld = (wpos-gbufferModelViewInverse[3].xyz);
|
||||
|
||||
float maxLength = min(length(dVWorld), far)/length(dVWorld);
|
||||
dV *= maxLength;
|
||||
dVWorld *= maxLength;
|
||||
float dL = length(dVWorld);
|
||||
float mult = length(dVWorld)/25;
|
||||
|
||||
vec3 progress = start.xyz;
|
||||
vec3 progressW = gbufferModelViewInverse[3].xyz + cameraPosition;
|
||||
|
||||
vec3 WsunVec = mat3(gbufferModelViewInverse) * sunVec * lightCol.a;
|
||||
float SdotV = dot(sunVec,normalize(viewPosition))*lightCol.a;
|
||||
|
||||
|
||||
/// ------------- COLOR/LIGHTING STUFF ------------- \\\
|
||||
|
||||
vec3 color = vec3(0.0);
|
||||
vec3 absorbance = vec3(1.0);
|
||||
|
||||
///// ----- fog lighting
|
||||
//Mie phase + somewhat simulates multiple scattering (Horizon zero down cloud approx)
|
||||
float mie = fogPhase(SdotV) * 5.0;
|
||||
float rayL = phaseRayleigh(SdotV);
|
||||
|
||||
vec3 rC = vec3(fog_coefficientRayleighR*1e-6, fog_coefficientRayleighG*1e-5, fog_coefficientRayleighB*1e-5);
|
||||
vec3 mC = vec3(fog_coefficientMieR*1e-6, fog_coefficientMieG*1e-6, fog_coefficientMieB*1e-6);
|
||||
|
||||
vec3 LightSourceColor = LightColor;
|
||||
#ifdef ambientLight_only
|
||||
LightSourceColor = vec3(0.0);
|
||||
#endif
|
||||
|
||||
vec3 skyCol0 = AmbientColor;
|
||||
|
||||
#ifdef PER_BIOME_ENVIRONMENT
|
||||
BiomeFogColor(LightSourceColor);
|
||||
BiomeFogColor(skyCol0);
|
||||
#endif
|
||||
|
||||
skyCol0 = max(skyCol0 + skyCol0*(normalize(wpos).y*0.9+0.1),0.0);
|
||||
|
||||
float lightleakfix = clamp(pow(eyeBrightnessSmooth.y/240.,2) ,0.0,1.0);
|
||||
|
||||
#ifdef RAYMARCH_CLOUDS_WITH_FOG
|
||||
///// ----- cloud stuff
|
||||
|
||||
// first cloud layer
|
||||
float MinHeight_0 = Cumulus_height;
|
||||
float MaxHeight_0 = 100 + MinHeight_0;
|
||||
|
||||
// second cloud layer
|
||||
float MinHeight_1 = MaxHeight_0 + 50;
|
||||
float MaxHeight_1 = 100 + MinHeight_1;
|
||||
|
||||
vec3 SkyColor = AmbientColor;
|
||||
|
||||
float shadowStep = 200.0;
|
||||
|
||||
vec3 dV_Sun = WsunVec*shadowStep;
|
||||
|
||||
float mieDay = phaseg(SdotV, 0.75);
|
||||
float mieDayMulti = (phaseg(SdotV, 0.35) + phaseg(-SdotV, 0.35) * 0.5) ;
|
||||
|
||||
vec3 directScattering = LightColor * mieDay * 3.14;
|
||||
vec3 directMultiScattering = LightColor * mieDayMulti * 4.0;
|
||||
|
||||
vec3 sunIndirectScattering = LightColor * phaseg(dot(mat3(gbufferModelView)*vec3(0,1,0),normalize(viewPosition)), 0.5) * 3.14;
|
||||
#endif
|
||||
|
||||
float expFactor = 11.0;
|
||||
for (int i=0;i<VL_SAMPLES;i++) {
|
||||
float d = (pow(expFactor, float(i+dither.x)/float(VL_SAMPLES))/expFactor - 1.0/expFactor)/(1-1.0/expFactor);
|
||||
float dd = pow(expFactor, float(i+dither.x)/float(VL_SAMPLES)) * log(expFactor) / float(VL_SAMPLES)/(expFactor-1.0);
|
||||
progress = start.xyz + d*dV;
|
||||
progressW = gbufferModelViewInverse[3].xyz+cameraPosition + d*dVWorld;
|
||||
|
||||
//project into biased shadowmap space
|
||||
float distortFactor = calcDistort(progress.xy);
|
||||
vec3 pos = vec3(progress.xy*distortFactor, progress.z);
|
||||
|
||||
float sh = 1.0;
|
||||
|
||||
if (abs(pos.x) < 1.0-0.5/2048. && abs(pos.y) < 1.0-0.5/2048){
|
||||
pos = pos*vec3(0.5,0.5,0.5/6.0)+0.5;
|
||||
sh = shadow2D(shadow, pos).x;
|
||||
}
|
||||
float sh2 = sh;
|
||||
|
||||
#ifdef VL_CLOUDS_SHADOWS
|
||||
sh *= GetCloudShadow_VLFOG(progressW, WsunVec);
|
||||
#endif
|
||||
|
||||
float densityVol = cloudVol(progressW) * lightleakfix;
|
||||
//Water droplets(fog)
|
||||
float density = densityVol*300.0;
|
||||
|
||||
///// ----- main fog lighting
|
||||
|
||||
//Just air
|
||||
vec2 airCoef = exp(-max(progressW.y - SEA_LEVEL, 0.0) / vec2(8.0e3, 1.2e3) * vec2(6.,7.0)) * 24 * Haze_amount;
|
||||
|
||||
//Pbr for air, yolo mix between mie and rayleigh for water droplets
|
||||
vec3 rL = rC*airCoef.x;
|
||||
vec3 m = (airCoef.y+density) * mC;
|
||||
|
||||
vec3 AtmosphericFog = skyCol0 * (rL*3.0 + m);
|
||||
vec3 DirectLight = (LightSourceColor*sh) * (rayL*rL*3.0 + m*mie);
|
||||
vec3 AmbientLight = skyCol0 * m;
|
||||
vec3 Lightning = Iris_Lightningflash_VLfog(progressW-cameraPosition, lightningBoltPosition.xyz) * m;
|
||||
|
||||
vec3 lighting = (AtmosphericFog + AmbientLight + DirectLight + Lightning) * lightleakfix;
|
||||
|
||||
|
||||
color += max(lighting - lighting * exp(-(rL+m)*dd*dL),0.0) / max(rL+m, 0.00000001)*absorbance;
|
||||
absorbance *= max(exp(-(rL+m)*dd*dL),0.0);
|
||||
|
||||
#ifdef RAYMARCH_CLOUDS_WITH_FOG
|
||||
//////////////////////////////////////////
|
||||
///// ----- cloud part
|
||||
//////////////////////////////////////////
|
||||
|
||||
// determine the base of each cloud layer
|
||||
bool isUpperLayer = max(progressW.y - MinHeight_1,0.0) > 0.0;
|
||||
float CloudBaseHeights = isUpperLayer ? 200.0 + MaxHeight_0 : MaxHeight_0;
|
||||
|
||||
float curvature = pow(clamp(1.0 - length(progressW)/far,0,1),2) * 50;
|
||||
|
||||
float cumulus = GetCumulusDensity(progressW, 1, MinHeight_0, MaxHeight_0);
|
||||
|
||||
float fadedDensity = Cumulus_density * clamp(exp( (progressW.y - (CloudBaseHeights - 70)) / 9.0 ),0.0,1.0);
|
||||
|
||||
if(cumulus > 1e-5){
|
||||
float muE = cumulus*fadedDensity;
|
||||
|
||||
float directLight = 0.0;
|
||||
for (int j=0; j < 3; j++){
|
||||
|
||||
vec3 shadowSamplePos = progressW + dV_Sun * (0.1 + j * (0.1 + dither.y*0.05));
|
||||
float shadow = GetCumulusDensity(shadowSamplePos, 0, MinHeight_0, MaxHeight_0) * Cumulus_density;
|
||||
|
||||
directLight += shadow;
|
||||
}
|
||||
|
||||
if(max(progressW.y - MaxHeight_1 + 50,0.0) < 1.0) directLight += Cumulus_density * 2.0 * GetCumulusDensity(progressW + dV_Sun/abs(dV_Sun.y) * max((MaxHeight_1 - 30.0) - progressW.y,0.0), 0, MinHeight_0, MaxHeight_0);
|
||||
|
||||
float upperLayerOcclusion = !isUpperLayer ? Cumulus_density * 2.0 * GetCumulusDensity(progressW + vec3(0.0,1.0,0.0) * max((MaxHeight_1 - 30.0) - progressW.y,0.0), 0, MinHeight_0, MaxHeight_0) : 0.0;
|
||||
float skylightOcclusion = max(exp2((upperLayerOcclusion*upperLayerOcclusion) * -5), 0.75);
|
||||
|
||||
float skyScatter = clamp((CloudBaseHeights - 20 - progressW.y) / 275.0,0.0,1.0);
|
||||
vec3 Lighting = DoCloudLighting(muE, cumulus, SkyColor*skylightOcclusion, skyScatter, directLight, directScattering*sh2, directMultiScattering*sh2, 1);
|
||||
|
||||
// a horrible approximation of direct light indirectly hitting the lower layer of clouds after scattering through/bouncing off the upper layer.
|
||||
Lighting += sunIndirectScattering * exp((skyScatter*skyScatter) * cumulus * -35.0) * upperLayerOcclusion * exp(-20.0 * pow(abs(upperLayerOcclusion - 0.3),2));
|
||||
|
||||
|
||||
color += max(Lighting - Lighting*exp(-muE*dd*dL),0.0) * absorbance;
|
||||
absorbance *= max(exp(-muE*dd*dL),0.0);
|
||||
}
|
||||
#endif /// VL CLOUDS
|
||||
|
||||
}
|
||||
return vec4(color, min(dot(absorbance,vec3(0.335)),1.0));
|
||||
}
|
||||
|
||||
/*
|
||||
// uniform bool inSpecialBiome;
|
||||
vec4 GetVolumetricFog(
|
||||
vec3 viewPosition,
|
||||
@ -173,159 +359,4 @@ vec4 GetVolumetricFog(
|
||||
}
|
||||
return vec4(color, dot(absorbance,vec3(0.333333)));
|
||||
}
|
||||
|
||||
/*
|
||||
/// experimental functions to render clouds and fog in 2 passes
|
||||
|
||||
float cloudCoverage(in vec3 pos, float minHeight, float maxHeight){
|
||||
float FinalCloudCoverage = 0.0;
|
||||
vec3 playerPos = pos - cameraPosition;
|
||||
vec3 samplePos = pos*vec3(1.0,1./48.,1.0)/4;
|
||||
|
||||
// minHeight -= curvature; maxHeight -= curvature;
|
||||
|
||||
float thingy = pow(1.0-clamp(1.0-length(playerPos)/2000,0,1),2) * 2.0;
|
||||
|
||||
float CloudLarge = texture2D(noisetex, (samplePos.xz+ cloud_movement)/5000.0).b;
|
||||
float CloudSmall = texture2D(noisetex, (samplePos.xz- cloud_movement)/500.0).r;
|
||||
|
||||
float coverage = abs(CloudLarge*2.0 - 1.2)*0.5 - (1.0-CloudSmall);
|
||||
|
||||
|
||||
/////// FIRST LAYER
|
||||
float layer0 = min(min(coverage + max(Cumulus_coverage,thingy), clamp(maxHeight - pos.y,0,1)), 1.0 - clamp(minHeight - pos.y,0,1));
|
||||
|
||||
float Topshape = max(pos.y - (maxHeight - 75),0.0) / 200.0;
|
||||
Topshape += max(pos.y - (maxHeight - 10),0.0) / 50.0;
|
||||
|
||||
float Baseshape = max(minHeight + 12.5 - pos.y, 0.0) / 50.0;
|
||||
|
||||
FinalCloudCoverage += max(layer0 - Topshape - Baseshape,0.0);
|
||||
|
||||
float erosion = 1.0 - densityAtPos(samplePos * 200);
|
||||
float noise = erosion * (1.0-FinalCloudCoverage) ;
|
||||
FinalCloudCoverage = max(FinalCloudCoverage - noise*noise*0.5, 0.0);
|
||||
|
||||
return FinalCloudCoverage;
|
||||
}
|
||||
|
||||
vec4 renderVolumetrics(
|
||||
vec3 viewPosition,
|
||||
vec2 dither,
|
||||
vec3 directLightColor,
|
||||
vec3 skyLightColor
|
||||
){
|
||||
int SAMPLES = 30;
|
||||
vec3 color = vec3(0.0);
|
||||
float absorbance = 1.0;
|
||||
|
||||
vec3 wpos = mat3(gbufferModelViewInverse) * viewPosition + gbufferModelViewInverse[3].xyz;
|
||||
vec3 fragposition = mat3(shadowModelView) * wpos + shadowModelView[3].xyz;
|
||||
fragposition = diagonal3(shadowProjection) * fragposition + shadowProjection[3].xyz;
|
||||
|
||||
//////////////////////////////////////////
|
||||
////// lighting stuff
|
||||
//////////////////////////////////////////
|
||||
|
||||
float shadowStep = 200.0;
|
||||
vec3 dV_Sun = WsunVec*shadowStep;
|
||||
float SdotV = dot(mat3(gbufferModelView)*WsunVec,normalize(viewPosition));
|
||||
// if(dV_Sun.y/shadowStep < -0.1) dV_Sun = -dV_Sun;
|
||||
|
||||
float mieDay = phaseg(SdotV, 0.75);
|
||||
float mieDayMulti = (phaseg(SdotV, 0.35) + phaseg(-SdotV, 0.35) * 0.5) ;
|
||||
|
||||
vec3 sunScattering = directLightColor * mieDay * 3.14;
|
||||
vec3 sunMultiScattering = directLightColor * mieDayMulti * 4.0;
|
||||
|
||||
//////////////////////////////////////////
|
||||
////// raymarching stuff
|
||||
//////////////////////////////////////////
|
||||
|
||||
|
||||
//project view origin into projected shadowmap space
|
||||
vec3 start = toShadowSpaceProjected(vec3(0.0));
|
||||
|
||||
vec3 dV = fragposition - start;
|
||||
// vec3 dVWorld = (wpos - gbufferModelViewInverse[3].xyz);
|
||||
vec3 dVWorld = (wpos - gbufferModelViewInverse[3].xyz);
|
||||
|
||||
// float maxLength = min(length(dVWorld), far)/length(dVWorld);
|
||||
float maxLength = 1.0;
|
||||
dV *= maxLength;
|
||||
dVWorld *= maxLength;
|
||||
|
||||
float dL = length(dVWorld);
|
||||
|
||||
float minCloudHeight = Cumulus_height;
|
||||
float maxCloudHeight = minCloudHeight + 100;
|
||||
|
||||
|
||||
float expFactor = 11.0;
|
||||
vec3 progress = start.xyz;
|
||||
|
||||
vec3 progressW = gbufferModelViewInverse[3].xyz + cameraPosition;
|
||||
|
||||
|
||||
float heightRelativeToClouds = clamp(1.0 - max(eyeAltitude - (Cumulus_height),0.0) / 100.0 ,0.0,1.0);
|
||||
|
||||
for (int i=0; i < SAMPLES; i++) {
|
||||
|
||||
float d = (pow(expFactor, float(i+dither.x)/float(SAMPLES))/expFactor - 1.0/expFactor)/(1.0-1.0/expFactor);
|
||||
float dd = pow(expFactor, float(i+dither.x)/float(SAMPLES)) * log(expFactor) / float(SAMPLES)/(expFactor-1.0);
|
||||
|
||||
progress = start.xyz + d*dV;
|
||||
|
||||
// progressW = gbufferModelViewInverse[3].xyz + cameraPosition + d*dVWorld;
|
||||
|
||||
progressW = gbufferModelViewInverse[3].xyz + cameraPosition + d*dVWorld;
|
||||
|
||||
|
||||
float curvature = pow(length(progressW-cameraPosition)/200.0,2.0) * heightRelativeToClouds ;
|
||||
minCloudHeight -= curvature; maxCloudHeight -= curvature;
|
||||
|
||||
//project into biased shadowmap space
|
||||
float distortFactor = calcDistort(progress.xy);
|
||||
vec3 pos = vec3(progress.xy*distortFactor, progress.z);
|
||||
|
||||
float sh = 1.0;
|
||||
if (abs(pos.x) < 1.0-0.5/2048. && abs(pos.y) < 1.0-0.5/2048){
|
||||
pos = pos*vec3(0.5,0.5,0.5/6.0)+0.5;
|
||||
sh = shadow2D(shadow, pos).x;
|
||||
}
|
||||
|
||||
float cloud = cloudCoverage(progressW, minCloudHeight, maxCloudHeight);
|
||||
|
||||
float UniformFog = clamp(1.0 - (progressW.y-minCloudHeight-100) / 200,0.0,1.0);
|
||||
|
||||
float density = max(cloud, (UniformFog*UniformFog) * 0.00);
|
||||
|
||||
float horizonfalloff = exp(-(1.0-clamp(normalize(progressW-vec3(cameraPosition.x,0.0,cameraPosition.x)).y+1.0,0,1)));
|
||||
sunScattering *= horizonfalloff;
|
||||
sunMultiScattering *= horizonfalloff;
|
||||
|
||||
|
||||
// if(density > 1e-5){
|
||||
float muE = density * 0.5;
|
||||
|
||||
float sunLight = 0.0;
|
||||
|
||||
|
||||
for (int j=0; j < 3; j++){
|
||||
vec3 shadowSamplePos = progressW + dV_Sun * (0.1 + j * (0.1 + dither.y*0.05));
|
||||
float shadow = cloudCoverage(shadowSamplePos, minCloudHeight, maxCloudHeight) * 0.5;
|
||||
|
||||
sunLight += shadow;
|
||||
}
|
||||
|
||||
sunLight += 2*cloudCoverage(progressW + dV_Sun/abs(dV_Sun.y) * max(minCloudHeight+20 - progressW.y,0.0), minCloudHeight, maxCloudHeight) * exp(-10*cloud);
|
||||
vec3 lighting = skyLightColor + (sunScattering*exp(-5 * sunLight) + sunMultiScattering*exp(-3 * sunLight)) * sh;
|
||||
|
||||
color += max(lighting - lighting*exp(-muE*dd*dL),0.0) * absorbance;
|
||||
absorbance *= max(exp(-muE*dd*dL),0.0);
|
||||
|
||||
if (absorbance < 1e-5) break;
|
||||
}
|
||||
return vec4(color, absorbance);
|
||||
}
|
||||
*/
|
Reference in New Issue
Block a user