mirror of
https://github.com/X0nk/Bliss-Shader.git
synced 2025-06-22 08:42:50 +08:00
surprise commit
new stuff reworked clouds, general lighting, end and nether shaders still WIP lighting is more balanced in general.
This commit is contained in:
@ -1,388 +1,518 @@
|
||||
#version 120
|
||||
//Volumetric fog rendering
|
||||
//Temporal Anti-Aliasing + Dynamic exposure calculations (vertex shader)
|
||||
|
||||
#extension GL_EXT_gpu_shader4 : enable
|
||||
|
||||
#include "lib/settings.glsl"
|
||||
#include "lib/res_params.glsl"
|
||||
|
||||
flat varying vec4 lightCol;
|
||||
flat varying vec3 ambientUp;
|
||||
flat varying vec3 ambientLeft;
|
||||
flat varying vec3 ambientRight;
|
||||
flat varying vec3 ambientB;
|
||||
flat varying vec3 ambientF;
|
||||
flat varying vec3 ambientDown;
|
||||
flat varying vec3 avgAmbient;
|
||||
|
||||
//TAA OPTIONS
|
||||
|
||||
const int noiseTextureResolution = 32;
|
||||
|
||||
|
||||
/*
|
||||
const int colortex0Format = RGBA16F; // low res clouds (deferred->composite2) + low res VL (composite5->composite15)
|
||||
const int colortex1Format = RGBA16; //terrain gbuffer (gbuffer->composite2)
|
||||
const int colortex2Format = RGBA16F; //forward + transparencies (gbuffer->composite4)
|
||||
const int colortex3Format = R11F_G11F_B10F; //frame buffer + bloom (deferred6->final)
|
||||
const int colortex4Format = RGBA16F; //light values and skyboxes (everything)
|
||||
|
||||
|
||||
const int colortex6Format = R11F_G11F_B10F; //additionnal buffer for bloom (composite3->final)
|
||||
const int colortex7Format = RGBA8; //Final output, transparencies id (gbuffer->composite4)
|
||||
const int colortex8Format = RGBA16F; //Final output, transparencies id (gbuffer->composite4)
|
||||
const int colortex9Format = RGBA8; //Final output, transparencies id (gbuffer->composite4)
|
||||
const int colortex10Format = RGBA16F; //Final output, transparencies id (gbuffer->composite4)
|
||||
|
||||
const int colortex13Format = RGBA16F; //Final output, transparencies id (gbuffer->composite4)
|
||||
// const int colortex15Format = RGBA16F; // flat normals and vanilla
|
||||
*/
|
||||
//no need to clear the buffers, saves a few fps
|
||||
/*
|
||||
const bool colortex0Clear = false;
|
||||
const bool colortex1Clear = false;
|
||||
const bool colortex2Clear = true;
|
||||
const bool colortex3Clear = false;
|
||||
const bool colortex4Clear = false;
|
||||
const bool colortex5Clear = false;
|
||||
const bool colortex6Clear = false;
|
||||
const bool colortex7Clear = false;
|
||||
*/
|
||||
|
||||
|
||||
|
||||
#ifdef SCREENSHOT_MODE
|
||||
/*
|
||||
const int colortex5Format = RGBA32F; //TAA buffer (everything)
|
||||
*/
|
||||
#else
|
||||
/*
|
||||
const int colortex5Format = R11F_G11F_B10F; //TAA buffer (everything)
|
||||
*/
|
||||
#endif
|
||||
|
||||
varying vec2 texcoord;
|
||||
flat varying float exposureA;
|
||||
flat varying float tempOffsets;
|
||||
flat varying float fogAmount;
|
||||
flat varying float VFAmount;
|
||||
flat varying float FogSchedule;
|
||||
uniform sampler2D noisetex;
|
||||
|
||||
uniform sampler2D colortex0;
|
||||
uniform sampler2D colortex1;
|
||||
uniform sampler2D colortex3;
|
||||
uniform sampler2D colortex5;
|
||||
uniform sampler2D colortex6;
|
||||
// uniform sampler2D colortex10;
|
||||
uniform sampler2D colortex13;
|
||||
|
||||
uniform sampler2D depthtex0;
|
||||
uniform sampler2D depthtex1;
|
||||
uniform sampler2DShadow shadow;
|
||||
flat varying vec3 refractedSunVec;
|
||||
flat varying vec3 WsunVec;
|
||||
|
||||
uniform sampler2D colortex1;
|
||||
uniform sampler2D colortex2;
|
||||
uniform sampler2D colortex3;
|
||||
// uniform sampler2D colortex4;
|
||||
|
||||
uniform vec3 sunVec;
|
||||
uniform float far;
|
||||
uniform float near;
|
||||
uniform int frameCounter;
|
||||
uniform float rainStrength;
|
||||
uniform float sunElevation;
|
||||
uniform ivec2 eyeBrightnessSmooth;
|
||||
uniform float frameTimeCounter;
|
||||
uniform int isEyeInWater;
|
||||
uniform vec2 texelSize;
|
||||
|
||||
|
||||
#include "lib/Shadow_Params.glsl"
|
||||
#include "lib/color_transforms.glsl"
|
||||
#include "lib/color_dither.glsl"
|
||||
uniform float frameTimeCounter;
|
||||
uniform float viewHeight;
|
||||
uniform float viewWidth;
|
||||
uniform int frameCounter;
|
||||
uniform int framemod8;
|
||||
uniform vec3 previousCameraPosition;
|
||||
uniform mat4 gbufferPreviousModelView;
|
||||
#define fsign(a) (clamp((a)*1e35,0.,1.)*2.-1.)
|
||||
#include "lib/projections.glsl"
|
||||
#include "lib/sky_gradient.glsl"
|
||||
#include "/lib/res_params.glsl"
|
||||
// #include "lib/biome_specifics.glsl"
|
||||
|
||||
#define TIMEOFDAYFOG
|
||||
#include "lib/volumetricClouds.glsl"
|
||||
|
||||
|
||||
float blueNoise(){
|
||||
return fract(texelFetch2D(noisetex, ivec2(gl_FragCoord.xy)%512, 0).a + 1.0/1.6180339887 * frameCounter);
|
||||
float luma(vec3 color) {
|
||||
return dot(color,vec3(0.21, 0.72, 0.07));
|
||||
}
|
||||
float interleaved_gradientNoise(){
|
||||
return fract(52.9829189*fract(0.06711056*gl_FragCoord.x + 0.00583715*gl_FragCoord.y)+tempOffsets);
|
||||
}
|
||||
float triangularize(float dither)
|
||||
{
|
||||
float center = dither*2.0-1.0;
|
||||
dither = center*inversesqrt(abs(center));
|
||||
return clamp(dither-fsign(center),0.0,1.0);
|
||||
}
|
||||
vec3 fp10Dither(vec3 color,float dither){
|
||||
const vec3 mantissaBits = vec3(6.,6.,5.);
|
||||
vec3 exponent = floor(log2(color));
|
||||
return color + dither*exp2(-mantissaBits)*exp2(exponent);
|
||||
}
|
||||
|
||||
|
||||
//returns the projected coordinates of the closest point to the camera in the 3x3 neighborhood
|
||||
vec3 closestToCamera5taps(vec2 texcoord, sampler2D depth)
|
||||
{
|
||||
vec2 du = vec2(texelSize.x*2., 0.0);
|
||||
vec2 dv = vec2(0.0, texelSize.y*2.);
|
||||
|
||||
vec3 dtl = vec3(texcoord,0.) + vec3(-texelSize, texture2D(depth, texcoord - dv - du).x);
|
||||
vec3 dtr = vec3(texcoord,0.) + vec3( texelSize.x, -texelSize.y, texture2D(depth, texcoord - dv + du).x);
|
||||
vec3 dmc = vec3(texcoord,0.) + vec3( 0.0, 0.0, texture2D(depth, texcoord).x);
|
||||
vec3 dbl = vec3(texcoord,0.) + vec3(-texelSize.x, texelSize.y, texture2D(depth, texcoord + dv - du).x);
|
||||
vec3 dbr = vec3(texcoord,0.) + vec3( texelSize.x, texelSize.y, texture2D(depth, texcoord + dv + du).x);
|
||||
|
||||
vec3 dmin = dmc;
|
||||
dmin = dmin.z > dtr.z? dtr : dmin;
|
||||
dmin = dmin.z > dtl.z? dtl : dmin;
|
||||
dmin = dmin.z > dbl.z? dbl : dmin;
|
||||
dmin = dmin.z > dbr.z? dbr : dmin;
|
||||
#ifdef TAA_UPSCALING
|
||||
dmin.xy = dmin.xy/RENDER_SCALE;
|
||||
#endif
|
||||
return dmin;
|
||||
}
|
||||
|
||||
//Modified texture interpolation from inigo quilez
|
||||
vec4 smoothfilter(in sampler2D tex, in vec2 uv)
|
||||
{
|
||||
vec2 textureResolution = vec2(viewWidth,viewHeight);
|
||||
uv = uv*textureResolution + 0.5;
|
||||
vec2 iuv = floor( uv );
|
||||
vec2 fuv = fract( uv );
|
||||
uv = iuv + fuv*fuv*fuv*(fuv*(fuv*6.0-15.0)+10.0);
|
||||
uv = (uv - 0.5)/textureResolution;
|
||||
return texture2D( tex, uv);
|
||||
}
|
||||
//Due to low sample count we "tonemap" the inputs to preserve colors and smoother edges
|
||||
vec3 weightedSample(sampler2D colorTex, vec2 texcoord){
|
||||
vec3 wsample = texture2D(colorTex,texcoord).rgb*exposureA;
|
||||
return wsample/(1.0+luma(wsample));
|
||||
|
||||
}
|
||||
|
||||
|
||||
//from : https://gist.github.com/TheRealMJP/c83b8c0f46b63f3a88a5986f4fa982b1
|
||||
vec4 SampleTextureCatmullRom(sampler2D tex, vec2 uv, vec2 texSize )
|
||||
{
|
||||
// We're going to sample a a 4x4 grid of texels surrounding the target UV coordinate. We'll do this by rounding
|
||||
// down the sample location to get the exact center of our "starting" texel. The starting texel will be at
|
||||
// location [1, 1] in the grid, where [0, 0] is the top left corner.
|
||||
vec2 samplePos = uv * texSize;
|
||||
vec2 texPos1 = floor(samplePos - 0.5) + 0.5;
|
||||
|
||||
// Compute the fractional offset from our starting texel to our original sample location, which we'll
|
||||
// feed into the Catmull-Rom spline function to get our filter weights.
|
||||
vec2 f = samplePos - texPos1;
|
||||
|
||||
// Compute the Catmull-Rom weights using the fractional offset that we calculated earlier.
|
||||
// These equations are pre-expanded based on our knowledge of where the texels will be located,
|
||||
// which lets us avoid having to evaluate a piece-wise function.
|
||||
vec2 w0 = f * ( -0.5 + f * (1.0 - 0.5*f));
|
||||
vec2 w1 = 1.0 + f * f * (-2.5 + 1.5*f);
|
||||
vec2 w2 = f * ( 0.5 + f * (2.0 - 1.5*f) );
|
||||
vec2 w3 = f * f * (-0.5 + 0.5 * f);
|
||||
|
||||
// Work out weighting factors and sampling offsets that will let us use bilinear filtering to
|
||||
// simultaneously evaluate the middle 2 samples from the 4x4 grid.
|
||||
vec2 w12 = w1 + w2;
|
||||
vec2 offset12 = w2 / (w1 + w2);
|
||||
|
||||
// Compute the final UV coordinates we'll use for sampling the texture
|
||||
vec2 texPos0 = texPos1 - vec2(1.0);
|
||||
vec2 texPos3 = texPos1 + vec2(2.0);
|
||||
vec2 texPos12 = texPos1 + offset12;
|
||||
|
||||
texPos0 *= texelSize;
|
||||
texPos3 *= texelSize;
|
||||
texPos12 *= texelSize;
|
||||
|
||||
vec4 result = vec4(0.0);
|
||||
result += texture2D(tex, vec2(texPos0.x, texPos0.y)) * w0.x * w0.y;
|
||||
result += texture2D(tex, vec2(texPos12.x, texPos0.y)) * w12.x * w0.y;
|
||||
result += texture2D(tex, vec2(texPos3.x, texPos0.y)) * w3.x * w0.y;
|
||||
|
||||
result += texture2D(tex, vec2(texPos0.x, texPos12.y)) * w0.x * w12.y;
|
||||
result += texture2D(tex, vec2(texPos12.x, texPos12.y)) * w12.x * w12.y;
|
||||
result += texture2D(tex, vec2(texPos3.x, texPos12.y)) * w3.x * w12.y;
|
||||
|
||||
result += texture2D(tex, vec2(texPos0.x, texPos3.y)) * w0.x * w3.y;
|
||||
result += texture2D(tex, vec2(texPos12.x, texPos3.y)) * w12.x * w3.y;
|
||||
result += texture2D(tex, vec2(texPos3.x, texPos3.y)) * w3.x * w3.y;
|
||||
|
||||
return result;
|
||||
}
|
||||
float R2_dither(){
|
||||
vec2 alpha = vec2(0.75487765, 0.56984026);
|
||||
return fract(alpha.x * gl_FragCoord.x + alpha.y * gl_FragCoord.y + 1.0/1.6180339887 * frameCounter) ;
|
||||
return fract(alpha.x * gl_FragCoord.x + alpha.y * gl_FragCoord.y + 1.0/1.6180339887 * frameCounter);
|
||||
}
|
||||
float R2_dither2(){
|
||||
vec2 alpha = vec2(0.75487765, 0.56984026);
|
||||
return fract(alpha.x *(1- gl_FragCoord.x) + alpha.y * (1-gl_FragCoord.y) + 1.0/1.6180339887 * frameCounter) ;
|
||||
}
|
||||
float interleaved_gradientNoise(){
|
||||
vec2 alpha = vec2(0.75487765, 0.56984026);
|
||||
vec2 coord = vec2(alpha.x * gl_FragCoord.x,alpha.y * gl_FragCoord.y)+ 1.0/1.6180339887 * frameCounter;
|
||||
float noise = fract(52.9829189*fract(0.06711056*coord.x + 0.00583715*coord.y));
|
||||
return noise;
|
||||
//approximation from SMAA presentation from siggraph 2016
|
||||
vec3 FastCatmulRom(sampler2D colorTex, vec2 texcoord, vec4 rtMetrics, float sharpenAmount)
|
||||
{
|
||||
vec2 position = rtMetrics.zw * texcoord;
|
||||
vec2 centerPosition = floor(position - 0.5) + 0.5;
|
||||
vec2 f = position - centerPosition;
|
||||
vec2 f2 = f * f;
|
||||
vec2 f3 = f * f2;
|
||||
|
||||
float c = sharpenAmount;
|
||||
vec2 w0 = -c * f3 + 2.0 * c * f2 - c * f;
|
||||
vec2 w1 = (2.0 - c) * f3 - (3.0 - c) * f2 + 1.0;
|
||||
vec2 w2 = -(2.0 - c) * f3 + (3.0 - 2.0 * c) * f2 + c * f;
|
||||
vec2 w3 = c * f3 - c * f2;
|
||||
|
||||
vec2 w12 = w1 + w2;
|
||||
vec2 tc12 = rtMetrics.xy * (centerPosition + w2 / w12);
|
||||
vec3 centerColor = texture2D(colorTex, vec2(tc12.x, tc12.y)).rgb;
|
||||
|
||||
vec2 tc0 = rtMetrics.xy * (centerPosition - 1.0);
|
||||
vec2 tc3 = rtMetrics.xy * (centerPosition + 2.0);
|
||||
vec4 color = vec4(texture2D(colorTex, vec2(tc12.x, tc0.y )).rgb, 1.0) * (w12.x * w0.y ) +
|
||||
vec4(texture2D(colorTex, vec2(tc0.x, tc12.y)).rgb, 1.0) * (w0.x * w12.y) +
|
||||
vec4(centerColor, 1.0) * (w12.x * w12.y) +
|
||||
vec4(texture2D(colorTex, vec2(tc3.x, tc12.y)).rgb, 1.0) * (w3.x * w12.y) +
|
||||
vec4(texture2D(colorTex, vec2(tc12.x, tc3.y )).rgb, 1.0) * (w12.x * w3.y );
|
||||
return color.rgb/color.a;
|
||||
|
||||
}
|
||||
|
||||
float phaseRayleigh(float cosTheta) {
|
||||
const vec2 mul_add = vec2(0.1, 0.28) /acos(-1.0);
|
||||
return cosTheta * mul_add.x + mul_add.y; // optimized version from [Elek09], divided by 4 pi for energy conservation
|
||||
}
|
||||
vec3 clip_aabb(vec3 q,vec3 aabb_min, vec3 aabb_max)
|
||||
{
|
||||
vec3 p_clip = 0.5 * (aabb_max + aabb_min);
|
||||
vec3 e_clip = 0.5 * (aabb_max - aabb_min) + 0.00000001;
|
||||
|
||||
float GetCloudShadow(vec3 eyePlayerPos){
|
||||
vec3 worldPos = (eyePlayerPos + cameraPosition) - Cloud_Height;
|
||||
vec3 cloudPos = worldPos*Cloud_Size + WsunVec/abs(WsunVec.y) * ((3250 - 3250*0.35) - worldPos.y*Cloud_Size) ;
|
||||
float shadow = getCloudDensity(cloudPos, 1);
|
||||
|
||||
shadow = clamp(exp(-shadow*5),0.0,1.0);
|
||||
|
||||
return shadow ;
|
||||
}
|
||||
|
||||
float densityAtPosFog(in vec3 pos){
|
||||
pos /= 18.;
|
||||
pos.xz *= 0.5;
|
||||
vec3 p = floor(pos);
|
||||
vec3 f = fract(pos);
|
||||
f = (f*f) * (3.-2.*f);
|
||||
vec2 uv = p.xz + f.xz + p.y * vec2(0.0,193.0);
|
||||
vec2 coord = uv / 512.0;
|
||||
vec2 xy = texture2D(noisetex, coord).yx;
|
||||
return mix(xy.r,xy.g, f.y);
|
||||
}
|
||||
|
||||
float fog_densities_atmospheric = 24 * Haze_amount; // this is seperate from the cloudy and uniform fog.
|
||||
|
||||
float cloudVol(in vec3 pos){
|
||||
|
||||
vec3 samplePos = pos*vec3(1.0,1./24.,1.0);
|
||||
vec3 samplePos2 = pos*vec3(1.0,1./48.,1.0);
|
||||
|
||||
|
||||
float mult = exp( -max((pos.y - SEA_LEVEL) / 35.,0.0));
|
||||
|
||||
float fog_shape = 1-densityAtPosFog(samplePos * 24.0);
|
||||
float fog_eroded = 1-densityAtPosFog( samplePos2 * 200.0);
|
||||
|
||||
float CloudyFog = max( (fog_shape*2.0 - fog_eroded*0.5) - 1.2, 0.0) * mult;
|
||||
float UniformFog = exp2( -max((pos.y - SEA_LEVEL) / 25.,0.0));
|
||||
|
||||
float RainFog = max(fog_shape*10. - 7.,0.5) * exp2( -max((pos.y - SEA_LEVEL) / 25.,0.0)) * 5. * rainStrength;
|
||||
|
||||
TimeOfDayFog(UniformFog, CloudyFog);
|
||||
|
||||
return CloudyFog + UniformFog + RainFog;
|
||||
}
|
||||
|
||||
mat2x3 getVolumetricRays(
|
||||
float dither,
|
||||
vec3 fragpos,
|
||||
float dither2
|
||||
){
|
||||
//project pixel position into projected shadowmap space
|
||||
vec3 wpos = mat3(gbufferModelViewInverse) * fragpos + gbufferModelViewInverse[3].xyz;
|
||||
vec3 fragposition = mat3(shadowModelView) * wpos + shadowModelView[3].xyz;
|
||||
fragposition = diagonal3(shadowProjection) * fragposition + shadowProjection[3].xyz;
|
||||
|
||||
//project view origin into projected shadowmap space
|
||||
vec3 start = toShadowSpaceProjected(vec3(0.));
|
||||
|
||||
//rayvector into projected shadow map space
|
||||
//we can use a projected vector because its orthographic projection
|
||||
//however we still have to send it to curved shadow map space every step
|
||||
vec3 dV = fragposition-start;
|
||||
vec3 dVWorld = (wpos-gbufferModelViewInverse[3].xyz);
|
||||
|
||||
float maxLength = min(length(dVWorld),far)/length(dVWorld);
|
||||
dV *= maxLength;
|
||||
dVWorld *= maxLength;
|
||||
|
||||
//apply dither
|
||||
vec3 progress = start.xyz;
|
||||
vec3 progressW = gbufferModelViewInverse[3].xyz+cameraPosition;
|
||||
|
||||
vec3 vL = vec3(0.);
|
||||
|
||||
float SdotV = dot(sunVec,normalize(fragpos))*lightCol.a;
|
||||
float dL = length(dVWorld);
|
||||
|
||||
//Mie phase + somewhat simulates multiple scattering (Horizon zero down cloud approx)
|
||||
float mie = phaseg(SdotV,0.7)*5.0 + 1.0;
|
||||
float rayL = phaseRayleigh(SdotV);
|
||||
|
||||
// Makes fog more white idk how to simulate it correctly
|
||||
vec3 sunColor = lightCol.rgb / 127.0;
|
||||
vec3 skyCol0 = (ambientUp / 150. * 5.); // * max(abs(WsunVec.y)/150.0,0.);
|
||||
|
||||
vec3 rC = vec3(fog_coefficientRayleighR*1e-6, fog_coefficientRayleighG*1e-5, fog_coefficientRayleighB*1e-5);
|
||||
vec3 mC = vec3(fog_coefficientMieR*1e-6, fog_coefficientMieG*1e-6, fog_coefficientMieB*1e-6);
|
||||
|
||||
float mu = 1.0;
|
||||
float muS = mu;
|
||||
vec3 absorbance = vec3(1.0);
|
||||
float expFactor = 11.0;
|
||||
vec3 WsunVec = mat3(gbufferModelViewInverse) * sunVec * lightCol.a;
|
||||
|
||||
float cloudShadow = 1.0;
|
||||
|
||||
for (int i=0;i<VL_SAMPLES;i++) {
|
||||
float d = (pow(expFactor, float(i+dither)/float(VL_SAMPLES))/expFactor - 1.0/expFactor)/(1-1.0/expFactor);
|
||||
float dd = pow(expFactor, float(i+dither)/float(VL_SAMPLES)) * log(expFactor) / float(VL_SAMPLES)/(expFactor-1.0);
|
||||
progress = start.xyz + d*dV;
|
||||
progressW = gbufferModelViewInverse[3].xyz+cameraPosition + d*dVWorld;
|
||||
//project into biased shadowmap space
|
||||
float distortFactor = calcDistort(progress.xy);
|
||||
vec3 pos = vec3(progress.xy*distortFactor, progress.z);
|
||||
float densityVol = cloudVol(progressW);
|
||||
float sh = 1.0;
|
||||
if (abs(pos.x) < 1.0-0.5/2048. && abs(pos.y) < 1.0-0.5/2048){
|
||||
pos = pos*vec3(0.5,0.5,0.5/6.0)+0.5;
|
||||
sh = shadow2D( shadow, pos).x;
|
||||
}
|
||||
#ifdef VOLUMETRIC_CLOUDS
|
||||
#ifdef CLOUDS_SHADOWS
|
||||
#ifdef VL_CLOUDS_SHADOWS
|
||||
float max_height = clamp(400.0 - progressW.y, 0.0,1.0); // so it doesnt go beyond the height of the clouds
|
||||
vec3 campos = (progressW)-319;
|
||||
// get cloud position
|
||||
vec3 cloudPos = campos*Cloud_Size + WsunVec/abs(WsunVec.y) * (2250 - campos.y*Cloud_Size);
|
||||
// get the cloud density and apply it
|
||||
cloudShadow = getCloudDensity(cloudPos, 1);
|
||||
cloudShadow = exp(-cloudShadow*cloudDensity*200);
|
||||
cloudShadow *= max_height;
|
||||
// cloudShadow *= 1000; //debug
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
//Water droplets(fog)
|
||||
float density = densityVol*ATMOSPHERIC_DENSITY*mu*300.;
|
||||
|
||||
//Just air
|
||||
vec2 airCoef = exp(-max(progressW.y-SEA_LEVEL,0.0)/vec2(8.0e3, 1.2e3)*vec2(6.,7.0)) * 24;
|
||||
|
||||
//Pbr for air, yolo mix between mie and rayleigh for water droplets
|
||||
vec3 rL = rC*airCoef.x;
|
||||
vec3 m = (airCoef.y+density)*mC;
|
||||
|
||||
|
||||
vec3 DirectLight = (sunColor*sh*cloudShadow) * (rayL*rL+m*mie);
|
||||
vec3 AmbientLight = skyCol0 * m;
|
||||
vec3 AtmosphericFog = skyCol0 * (rL+m) ;
|
||||
|
||||
// extra fog effects
|
||||
vec3 rainRays = (sunColor*sh*cloudShadow) * (rayL*phaseg(SdotV,0.6)) * clamp(pow(WsunVec.y,5)*2,0.0,1) * rainStrength;
|
||||
vec3 CaveRays = (sunColor*sh*cloudShadow) * phaseg(SdotV,0.7) * 0.001 * (1.0 - max(eyeBrightnessSmooth.y,0)/240.);
|
||||
|
||||
vec3 vL0 = ( DirectLight + AmbientLight + AtmosphericFog + rainRays) * max(eyeBrightnessSmooth.y,0)/240. + CaveRays ;
|
||||
|
||||
#ifdef Biome_specific_environment
|
||||
BiomeFogColor(vL0); // ?????
|
||||
#endif
|
||||
|
||||
vL += (vL0 - vL0 * exp(-(rL+m)*dd*dL)) / ((rL+m)+0.00000001)*absorbance;
|
||||
absorbance *= clamp(exp(-(rL+m)*dd*dL),0.0,1.0);
|
||||
vec3 v_clip = q - vec3(p_clip);
|
||||
vec3 v_unit = v_clip.xyz / e_clip;
|
||||
vec3 a_unit = abs(v_unit);
|
||||
float ma_unit = max(a_unit.x, max(a_unit.y, a_unit.z));
|
||||
|
||||
if (ma_unit > 1.0)
|
||||
return vec3(p_clip) + v_clip / ma_unit;
|
||||
else
|
||||
return q;
|
||||
}
|
||||
return mat2x3(vL,absorbance);
|
||||
vec3 toClipSpace3Prev(vec3 viewSpacePosition) {
|
||||
return projMAD(gbufferPreviousProjection, viewSpacePosition) / -viewSpacePosition.z * 0.5 + 0.5;
|
||||
}
|
||||
|
||||
float waterCaustics(vec3 wPos, vec3 lightSource) { // water waves
|
||||
|
||||
vec2 pos = wPos.xz + (lightSource.xz/lightSource.y*wPos.y);
|
||||
if(isEyeInWater==1) pos = wPos.xz - (lightSource.xz/lightSource.y*wPos.y); // fix the fucky
|
||||
vec2 movement = vec2(-0.035*frameTimeCounter);
|
||||
float caustic = 0.0;
|
||||
float weightSum = 0.0;
|
||||
float radiance = 2.39996;
|
||||
mat2 rotationMatrix = mat2(vec2(cos(radiance), -sin(radiance)), vec2(sin(radiance), cos(radiance)));
|
||||
|
||||
const vec2 wave_size[4] = vec2[](
|
||||
vec2(64.),
|
||||
vec2(32.,16.),
|
||||
vec2(16.,32.),
|
||||
vec2(48.)
|
||||
);
|
||||
|
||||
for (int i = 0; i < 4; i++){
|
||||
pos = rotationMatrix * pos;
|
||||
|
||||
vec2 speed = movement;
|
||||
float waveStrength = 1.0;
|
||||
|
||||
if( i == 0) {
|
||||
speed *= 0.15;
|
||||
waveStrength = 2.0;
|
||||
}
|
||||
|
||||
float small_wave = texture2D(noisetex, pos / wave_size[i] + speed ).b * waveStrength;
|
||||
|
||||
caustic += max( 1.0-sin( 1.0-pow( 0.5+sin( small_wave*3.0 )*0.5, 25.0) ), 0);
|
||||
|
||||
weightSum -= exp2(caustic*0.1);
|
||||
}
|
||||
return caustic / weightSum;
|
||||
vec3 tonemap(vec3 col){
|
||||
return col/(1+luma(col));
|
||||
}
|
||||
vec3 normVec (vec3 vec){
|
||||
return vec*inversesqrt(dot(vec,vec));
|
||||
vec3 invTonemap(vec3 col){
|
||||
return col/(1-luma(col));
|
||||
}
|
||||
void waterVolumetrics(inout vec3 inColor, vec3 rayStart, vec3 rayEnd, float estEyeDepth, float estSunDepth, float rayLength, float dither, vec3 waterCoefs, vec3 scatterCoef, vec3 ambient, vec3 lightSource, float VdotL){
|
||||
int spCount = 8;
|
||||
const vec2[8] offsets = vec2[8](vec2(1./8.,-3./8.),
|
||||
vec2(-1.,3.)/8.,
|
||||
vec2(5.0,1.)/8.,
|
||||
vec2(-3,-5.)/8.,
|
||||
vec2(-5.,5.)/8.,
|
||||
vec2(-7.,-1.)/8.,
|
||||
vec2(3,7.)/8.,
|
||||
vec2(7.,-7.)/8.);
|
||||
|
||||
vec3 start = toShadowSpaceProjected(rayStart);
|
||||
vec3 end = toShadowSpaceProjected(rayEnd);
|
||||
vec3 dV = (end-start);
|
||||
|
||||
//limit ray length at 32 blocks for performance and reducing integration error
|
||||
//you can't see above this anyway
|
||||
float maxZ = min(rayLength,32.0)/(1e-8+rayLength);
|
||||
dV *= maxZ;
|
||||
vec3 dVWorld = mat3(gbufferModelViewInverse) * (rayEnd - rayStart) * maxZ;
|
||||
rayLength *= maxZ;
|
||||
float dY = normalize(mat3(gbufferModelViewInverse) * rayEnd).y * rayLength;
|
||||
vec3 absorbance = vec3(1.0);
|
||||
vec3 vL = vec3(0.0);
|
||||
float phase = 2*mix(phaseg(VdotL, 0.4),phaseg(VdotL, 0.8),0.5);
|
||||
float expFactor = 11.0;
|
||||
vec3 progressW = gbufferModelViewInverse[3].xyz+cameraPosition;
|
||||
vec3 WsunVec = mat3(gbufferModelViewInverse) * sunVec * lightCol.a;
|
||||
float cloudShadow = 1;
|
||||
for (int i=0;i<spCount;i++) {
|
||||
float d = (pow(expFactor, float(i+dither)/float(spCount))/expFactor - 1.0/expFactor)/(1-1.0/expFactor); // exponential step position (0-1)
|
||||
float dd = pow(expFactor, float(i+dither)/float(spCount)) * log(expFactor) / float(spCount)/(expFactor-1.0); //step length (derivative)
|
||||
vec3 spPos = start.xyz + dV*d;
|
||||
progressW = gbufferModelViewInverse[3].xyz+cameraPosition + d*dVWorld;
|
||||
//project into biased shadowmap space
|
||||
float distortFactor = calcDistort(spPos.xy);
|
||||
vec3 pos = vec3(spPos.xy*distortFactor, spPos.z);
|
||||
float sh = 1.0;
|
||||
if (abs(pos.x) < 1.0-0.5/2048. && abs(pos.y) < 1.0-0.5/2048){
|
||||
pos = pos*vec3(0.5,0.5,0.5/6.0)+0.5;
|
||||
sh = shadow2D( shadow, pos).x;
|
||||
}
|
||||
|
||||
#ifdef VOLUMETRIC_CLOUDS
|
||||
#ifdef CLOUDS_SHADOWS
|
||||
vec3 campos = (progressW)-319;
|
||||
// get cloud position
|
||||
vec3 cloudPos = campos*Cloud_Size + WsunVec/abs(WsunVec.y) * (2250 - campos.y*Cloud_Size);
|
||||
// get the cloud density and apply it
|
||||
float cloudShadow = getCloudDensity(cloudPos, 1);
|
||||
// cloudShadow = exp(-cloudShadow*sqrt(cloudDensity)*50);
|
||||
cloudShadow = clamp(exp(-cloudShadow*6),0.0,1.0);
|
||||
sh *= cloudShadow;
|
||||
#endif
|
||||
#endif
|
||||
|
||||
vec3 p3 = mat3(gbufferModelViewInverse) * rayEnd;
|
||||
vec3 np3 = normVec(p3);
|
||||
float ambfogfade = clamp(exp(np3.y*1.5 - 1.5),0.0,1.0) ;
|
||||
// float maxOf(vec2 v) { return max(v.x, v.y); }
|
||||
// float maxOf(vec3 v) { return max(v.x, max(v.y, v.z)); }
|
||||
// float maxOf(vec4 v) { return max(v.x, max(v.y, max(v.z, v.w))); }
|
||||
// const float eps = 1e-6;
|
||||
|
||||
vec3 ambientMul = exp(-max(estEyeDepth - dY * d,0.0) * waterCoefs) + ambfogfade*0.5 ;
|
||||
vec3 sunMul = exp(-max((estEyeDepth - dY * d) ,0.0)/abs(refractedSunVec.y) * waterCoefs)*cloudShadow;
|
||||
|
||||
float sunCaustics = waterCaustics(progressW, WsunVec);
|
||||
sunCaustics = max(pow(sunCaustics*3,2),0.5);
|
||||
// vec3 reproject(vec3 screenPos, sampler2D velocitySampler) {
|
||||
// vec3 velocity = texelFetch(velocitySampler, ivec2(screenPos.xy), 0).xyz;
|
||||
|
||||
vec3 light = (sh * lightSource * phase * sunCaustics * sunMul + (ambient*ambientMul))*scatterCoef;
|
||||
vL += (light - light * exp(-waterCoefs * dd * rayLength)) / waterCoefs *absorbance;
|
||||
absorbance *= exp(-dd * rayLength * waterCoefs);
|
||||
}
|
||||
inColor += vL;
|
||||
// if (maxOf(abs(velocity)) < r) {
|
||||
// return reproject(screenPos);
|
||||
// } else {
|
||||
// vec3 pos = screenToViewSpace(screenPos, false);
|
||||
// pos = pos - velocity;
|
||||
// pos = toScreenSpace(pos, false);
|
||||
|
||||
// return pos;
|
||||
// }
|
||||
// }
|
||||
vec3 worldToView(vec3 p3) {
|
||||
vec4 pos = vec4(p3, 0.0);
|
||||
pos = gbufferModelView * pos;
|
||||
return pos.xyz;
|
||||
}
|
||||
|
||||
//////////////////////////////VOID MAIN//////////////////////////////
|
||||
//////////////////////////////VOID MAIN//////////////////////////////
|
||||
//////////////////////////////VOID MAIN//////////////////////////////
|
||||
//////////////////////////////VOID MAIN//////////////////////////////
|
||||
//////////////////////////////VOID MAIN//////////////////////////////
|
||||
vec3 viewToWorld(vec3 viewPosition) {
|
||||
vec4 pos;
|
||||
pos.xyz = viewPosition;
|
||||
pos.w = 0.0;
|
||||
pos = gbufferModelViewInverse * pos;
|
||||
return pos.xyz;
|
||||
}
|
||||
vec3 projectAndDivide(mat4 projectionMatrix, vec3 position){
|
||||
vec4 homogeneousPos = projectionMatrix * vec4(position, 1.0);
|
||||
return homogeneousPos.xyz / homogeneousPos.w;
|
||||
}
|
||||
|
||||
vec3 TAA_hq(bool hand, bool istranslucent, vec3 EntityVelocity, inout vec3 DEBUG){
|
||||
#ifdef TAA_UPSCALING
|
||||
vec2 adjTC = clamp(texcoord*RENDER_SCALE, vec2(0.0),RENDER_SCALE-texelSize*2.);
|
||||
#else
|
||||
vec2 adjTC = texcoord;
|
||||
#endif
|
||||
|
||||
//use velocity from the nearest texel from camera in a 3x3 box in order to improve edge quality in motion
|
||||
#ifdef CLOSEST_VELOCITY
|
||||
vec3 closestToCamera = closestToCamera5taps(adjTC, depthtex0);
|
||||
#endif
|
||||
// if( EntityVelocity > vec3(0.0) ) closestToCamera = closestToCamera - EntityVelocity;
|
||||
|
||||
#ifndef CLOSEST_VELOCITY
|
||||
vec3 closestToCamera = vec3(texcoord,texture2D(depthtex1,adjTC).x);
|
||||
#endif
|
||||
|
||||
//reproject previous frame
|
||||
vec3 fragposition = toScreenSpace(closestToCamera);
|
||||
fragposition = mat3(gbufferModelViewInverse) * fragposition + gbufferModelViewInverse[3].xyz + (cameraPosition - previousCameraPosition);
|
||||
|
||||
vec3 previousPosition = mat3(gbufferPreviousModelView) * fragposition + gbufferPreviousModelView[3].xyz;
|
||||
previousPosition = toClipSpace3Prev(previousPosition) ;
|
||||
|
||||
|
||||
|
||||
|
||||
vec2 velocity = previousPosition.xy - closestToCamera.xy;
|
||||
previousPosition.xy = texcoord + velocity ;
|
||||
// previousPosition -= abs(EntityVelocity);
|
||||
|
||||
DEBUG = previousPosition;
|
||||
|
||||
//reject history if off-screen and early exit
|
||||
if (previousPosition.x < 0.0 || previousPosition.y < 0.0 || previousPosition.x > 1.0 || previousPosition.y > 1.0)
|
||||
return smoothfilter(colortex3, adjTC + offsets[framemod8]*texelSize*0.5).xyz;
|
||||
|
||||
#ifdef TAA_UPSCALING
|
||||
vec3 albedoCurrent0 = smoothfilter(colortex3, adjTC + offsets[framemod8]*texelSize*0.5).xyz;
|
||||
// Interpolating neighboorhood clampling boundaries between pixels
|
||||
vec3 cMax = texture2D(colortex0, adjTC).rgb;
|
||||
vec3 cMin = texture2D(colortex6, adjTC).rgb;
|
||||
#else
|
||||
vec3 albedoCurrent0 = texture2D(colortex3, adjTC).rgb;
|
||||
vec3 albedoCurrent1 = texture2D(colortex3, adjTC + vec2(texelSize.x,texelSize.y)).rgb;
|
||||
vec3 albedoCurrent2 = texture2D(colortex3, adjTC + vec2(texelSize.x,-texelSize.y)).rgb;
|
||||
vec3 albedoCurrent3 = texture2D(colortex3, adjTC + vec2(-texelSize.x,-texelSize.y)).rgb;
|
||||
vec3 albedoCurrent4 = texture2D(colortex3, adjTC + vec2(-texelSize.x,texelSize.y)).rgb;
|
||||
vec3 albedoCurrent5 = texture2D(colortex3, adjTC + vec2(0.0,texelSize.y)).rgb;
|
||||
vec3 albedoCurrent6 = texture2D(colortex3, adjTC + vec2(0.0,-texelSize.y)).rgb;
|
||||
vec3 albedoCurrent7 = texture2D(colortex3, adjTC + vec2(-texelSize.x,0.0)).rgb;
|
||||
vec3 albedoCurrent8 = texture2D(colortex3, adjTC + vec2(texelSize.x,0.0)).rgb;
|
||||
//Assuming the history color is a blend of the 3x3 neighborhood, we clamp the history to the min and max of each channel in the 3x3 neighborhood
|
||||
vec3 cMax = max(max(max(albedoCurrent0,albedoCurrent1),albedoCurrent2),max(albedoCurrent3,max(albedoCurrent4,max(albedoCurrent5,max(albedoCurrent6,max(albedoCurrent7,albedoCurrent8))))));
|
||||
vec3 cMin = min(min(min(albedoCurrent0,albedoCurrent1),albedoCurrent2),min(albedoCurrent3,min(albedoCurrent4,min(albedoCurrent5,min(albedoCurrent6,min(albedoCurrent7,albedoCurrent8))))));
|
||||
albedoCurrent0 = smoothfilter(colortex3, adjTC + offsets[framemod8]*texelSize*0.5).rgb;
|
||||
#endif
|
||||
|
||||
#ifndef NO_CLIP
|
||||
vec3 albedoPrev = max(FastCatmulRom(colortex5, previousPosition.xy,vec4(texelSize, 1.0/texelSize), 0.75).xyz, 0.0);
|
||||
vec3 finalcAcc = clamp(albedoPrev,cMin,cMax);
|
||||
|
||||
//Increases blending factor when far from AABB and in motion, reduces ghosting
|
||||
float isclamped = distance(albedoPrev,finalcAcc)/luma(albedoPrev) * 0.5;
|
||||
float movementRejection = (0.12+isclamped)*clamp(length(velocity/texelSize),0.0,1.0);
|
||||
|
||||
float test = 0.05;
|
||||
if(hand) movementRejection *= 5;
|
||||
if(istranslucent) test = 0.1;
|
||||
|
||||
//Blend current pixel with clamped history, apply fast tonemap beforehand to reduce flickering
|
||||
// vec3 supersampled = invTonemap(mix(tonemap(finalcAcc),tonemap(albedoCurrent0),clamp(BLEND_FACTOR + movementRejection, min(luma(motionVector) *255,1.0),1.)));
|
||||
|
||||
vec3 supersampled = invTonemap(mix(tonemap(finalcAcc),tonemap(albedoCurrent0),clamp(BLEND_FACTOR + movementRejection, test,1.)));
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef NO_CLIP
|
||||
vec3 albedoPrev = texture2D(colortex5, previousPosition.xy).xyz;
|
||||
vec3 supersampled = mix(albedoPrev,albedoCurrent0,clamp(0.05,0.,1.));
|
||||
#endif
|
||||
|
||||
//De-tonemap
|
||||
return supersampled;
|
||||
}
|
||||
|
||||
|
||||
vec3 decode (vec2 encn){
|
||||
vec3 n = vec3(0.0);
|
||||
encn = encn * 2.0 - 1.0;
|
||||
n.xy = abs(encn);
|
||||
n.z = 1.0 - n.x - n.y;
|
||||
n.xy = n.z <= 0.0 ? (1.0 - n.yx) * sign(encn) : encn;
|
||||
return clamp(normalize(n.xyz),-1.0,1.0);
|
||||
}
|
||||
vec2 decodeVec2(float a){
|
||||
const vec2 constant1 = 65535. / vec2( 256., 65536.);
|
||||
const float constant2 = 256. / 255.;
|
||||
return fract( a * constant1 ) * constant2 ;
|
||||
}
|
||||
vec2 R2_samples(int n){
|
||||
vec2 alpha = vec2(0.75487765, 0.56984026);
|
||||
return fract(alpha * n)*2.-1.0;
|
||||
}
|
||||
vec4 TAA_hq_render(){
|
||||
#ifdef TAA_UPSCALING
|
||||
vec2 adjTC = clamp(texcoord*RENDER_SCALE, vec2(0.0),RENDER_SCALE-texelSize*2.);
|
||||
#else
|
||||
vec2 adjTC = texcoord;
|
||||
#endif
|
||||
|
||||
//use velocity from the nearest texel from camera in a 3x3 box in order to improve edge quality in motion
|
||||
#ifdef CLOSEST_VELOCITY
|
||||
vec3 closestToCamera = closestToCamera5taps(adjTC,depthtex0);
|
||||
#endif
|
||||
|
||||
#ifndef CLOSEST_VELOCITY
|
||||
vec3 closestToCamera = vec3(texcoord,texture2D(depthtex0,adjTC).x);
|
||||
#endif
|
||||
|
||||
//reproject previous frame
|
||||
vec3 fragposition = toScreenSpace(closestToCamera);
|
||||
fragposition = mat3(gbufferModelViewInverse) * fragposition + gbufferModelViewInverse[3].xyz + (cameraPosition - previousCameraPosition);
|
||||
vec3 previousPosition = mat3(gbufferPreviousModelView) * fragposition + gbufferPreviousModelView[3].xyz;
|
||||
previousPosition = toClipSpace3Prev(previousPosition);
|
||||
vec2 velocity = previousPosition.xy - closestToCamera.xy;
|
||||
previousPosition.xy = texcoord + velocity;
|
||||
|
||||
// //reject history if off-screen and early exit
|
||||
if (previousPosition.x < 0.0 || previousPosition.y < 0.0 || previousPosition.x > 1.0 || previousPosition.y > 1.0)
|
||||
return vec4(smoothfilter(colortex3, adjTC + R2_samples(frameCounter)*texelSize*0.5).xyz, 1.0);
|
||||
|
||||
vec3 albedoCurrent0 = smoothfilter(colortex3, adjTC + R2_samples(frameCounter)*texelSize*0.5).xyz;
|
||||
|
||||
float rej = 0.0;
|
||||
vec4 albedoPrev = texture2D(colortex5, previousPosition.xy);
|
||||
vec3 supersampled = albedoPrev.rgb * albedoPrev.a + albedoCurrent0;
|
||||
|
||||
if (length(velocity) > 1e-6) return vec4(albedoCurrent0,1.0);
|
||||
return vec4(supersampled/(albedoPrev.a+1.0), albedoPrev.a+1.0);
|
||||
}
|
||||
|
||||
void main() {
|
||||
/* DRAWBUFFERS:0 */
|
||||
float lightleakfix = max(eyeBrightnessSmooth.y,0)/240.;
|
||||
|
||||
if (isEyeInWater == 0){
|
||||
/* DRAWBUFFERS:5 */
|
||||
|
||||
vec2 tc = floor(gl_FragCoord.xy)/VL_RENDER_RESOLUTION*texelSize+0.5*texelSize;
|
||||
float z = texture2D(depthtex0,tc).x;
|
||||
vec3 fragpos = toScreenSpace(vec3(tc/RENDER_SCALE,z));
|
||||
float noise = blueNoise();
|
||||
mat2x3 vl = getVolumetricRays(noise,fragpos,blueNoise());
|
||||
float absorbance = dot(vl[1],vec3(0.22,0.71,0.07));
|
||||
gl_FragData[0] = clamp(vec4(vl[0],absorbance),0.000001,65000.);
|
||||
|
||||
} else {
|
||||
|
||||
float dirtAmount = Dirt_Amount;
|
||||
vec3 waterEpsilon = vec3(Water_Absorb_R, Water_Absorb_G, Water_Absorb_B);
|
||||
vec3 dirtEpsilon = vec3(Dirt_Absorb_R, Dirt_Absorb_G, Dirt_Absorb_B);
|
||||
vec3 totEpsilon = dirtEpsilon*dirtAmount + waterEpsilon;
|
||||
vec3 scatterCoef = dirtAmount * vec3(Dirt_Scatter_R, Dirt_Scatter_G, Dirt_Scatter_B);
|
||||
|
||||
#ifdef AEROCHROME_MODE
|
||||
totEpsilon *= 2.0;
|
||||
scatterCoef *= 10.0;
|
||||
gl_FragData[0].a = 1.0;
|
||||
#ifndef SPLIT_RENDER
|
||||
#ifdef SCREENSHOT_MODE
|
||||
|
||||
|
||||
vec4 color = TAA_hq_render();
|
||||
gl_FragData[0] = color;
|
||||
|
||||
|
||||
#else
|
||||
#ifdef TAA
|
||||
vec4 data = texture2D(colortex1,texcoord* RENDER_SCALE); // terraom
|
||||
vec4 dataUnpacked1 = vec4(decodeVec2(data.z),decodeVec2(data.w));
|
||||
bool hand = abs(dataUnpacked1.w-0.75) < 0.01;
|
||||
bool translucentCol = texture2D(colortex13,texcoord * RENDER_SCALE).a > 0.0; // translucents
|
||||
vec3 color = vec3(0.0);
|
||||
|
||||
// vec3 motionVector = texture2D(colortex10,texcoord).xyz ;
|
||||
// vec3 motionVector = texelFetch(colortex10, ivec2(gl_FragCoord.xy), 0).xyz * 2 - 1;
|
||||
|
||||
// if((motionVector.x+motionVector.y+motionVector.z) / 3 < 0.00001) motionVector = vec3(0.0);
|
||||
// vec3 viewpos = motionVector;
|
||||
// // vec3 eyepos = mat3(gbufferModelViewInverse) * viewpos;
|
||||
// // vec3 worldPos = eyepos + (cameraPosition + gbufferModelViewInverse[3].xyz);
|
||||
// // vec3 feetPos = worldPos - cameraPosition;
|
||||
|
||||
// vec4 clippos = gbufferProjection * vec4(motionVector,1.0);
|
||||
|
||||
// vec3 ndcPos = projectAndDivide(gbufferProjectionInverse, viewpos);
|
||||
// vec3 screenPos = ndcPos * 0.5 + 0.5;
|
||||
|
||||
|
||||
vec3 DEBUG = vec3(0.0);
|
||||
color += TAA_hq(hand, translucentCol, vec3(0.0),DEBUG);
|
||||
|
||||
|
||||
gl_FragData[0].rgb = clamp(fp10Dither(color ,triangularize(R2_dither())),6.11*1e-5,65000.0);
|
||||
// gl_FragData[0].rgb = motionVector;
|
||||
#endif
|
||||
|
||||
vec2 tc = floor(gl_FragCoord.xy)/VL_RENDER_RESOLUTION*texelSize+0.5*texelSize;
|
||||
float z = texture2D(depthtex0,tc).x;
|
||||
vec3 fragpos = toScreenSpace(vec3(tc/RENDER_SCALE,z));
|
||||
float noise = R2_dither();
|
||||
vec3 vl = vec3(0.0);
|
||||
float estEyeDepth = clamp((14.0-eyeBrightnessSmooth.y/255.0*16.0)/14.0,0.,1.0);
|
||||
estEyeDepth *= estEyeDepth*estEyeDepth*34.0;
|
||||
|
||||
#ifndef lightMapDepthEstimation
|
||||
estEyeDepth = max(Water_Top_Layer - cameraPosition.y,0.0);
|
||||
#ifndef TAA
|
||||
vec3 color = clamp(fp10Dither(texture2D(colortex3,texcoord).rgb,triangularize(interleaved_gradientNoise())),0.,65000.);
|
||||
gl_FragData[0].rgb = color;
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
|
||||
#ifdef SPLIT_RENDER
|
||||
if(texcoord.x > 0.5){
|
||||
|
||||
vec4 color = TAA_hq_render();
|
||||
gl_FragData[0] = color;
|
||||
|
||||
}else{
|
||||
vec4 data = texture2D(colortex1,texcoord* RENDER_SCALE); // terraom
|
||||
vec4 dataUnpacked1 = vec4(decodeVec2(data.z),decodeVec2(data.w));
|
||||
bool hand = abs(dataUnpacked1.w-0.75) < 0.01;
|
||||
bool translucentCol = texture2D(colortex13,texcoord * RENDER_SCALE).a > 0.0; // translucents
|
||||
|
||||
|
||||
|
||||
vec3 color = TAA_hq(hand, translucentCol);
|
||||
gl_FragData[0].rgb = clamp(fp10Dither(color ,triangularize(R2_dither())),6.11*1e-5,65000.0);
|
||||
|
||||
waterVolumetrics(vl, vec3(0.0), fragpos, estEyeDepth, estEyeDepth, length(fragpos), noise, totEpsilon, scatterCoef, (ambientUp*8./150./3.*0.5) , lightCol.rgb*8./150./3.0*(1.0-pow(1.0-sunElevation*lightCol.a,5.0)), dot(normalize(fragpos), normalize(sunVec) ));
|
||||
gl_FragData[0] = clamp(vec4(vl,1.0),0.000001,65000.);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
Reference in New Issue
Block a user