DOUBLE LAYER CLOUD TEST #3. altered the atmosphere and cloud blending into it. fixed fog ambient color being black.

This commit is contained in:
Xonk
2023-12-08 01:14:42 -05:00
parent 72709b914d
commit 3893c87607
4 changed files with 81 additions and 90 deletions

View File

@ -67,18 +67,14 @@ vec4 GetVolumetricFog(
vec3 LightColor,
vec3 AmbientColor
){
/// ------------- RAYMARCHING STUFF ------------- \\\
//project pixel position into projected shadowmap space
vec3 wpos = mat3(gbufferModelViewInverse) * viewPosition + gbufferModelViewInverse[3].xyz;
vec3 fragposition = mat3(shadowModelView) * wpos + shadowModelView[3].xyz;
fragposition = diagonal3(shadowProjection) * fragposition + shadowProjection[3].xyz;
// mat4 Custom_ViewMatrix = BuildShadowViewMatrix(LightDir);
// mat4 Custom_ProjectionMatrix = BuildShadowProjectionMatrix();
// vec3 fragposition = mat3(Custom_ViewMatrix) * wpos + Custom_ViewMatrix[3].xyz;
// fragposition = diagonal3(Custom_ProjectionMatrix) * fragposition + Custom_ProjectionMatrix[3].xyz;
//project view origin into projected shadowmap space
vec3 start = toShadowSpaceProjected(vec3(0.0));
@ -91,54 +87,45 @@ vec4 GetVolumetricFog(
float maxLength = min(length(dVWorld), far)/length(dVWorld);
dV *= maxLength;
dVWorld *= maxLength;
//apply dither
vec3 progress = start.xyz;
vec3 vL = vec3(0.);
float SdotV = dot(sunVec,normalize(viewPosition))*lightCol.a;
// float SdotV = dot(normalize(LightDir * mat3(gbufferModelViewInverse)), normalize(viewPosition))*lightCol.a;
float dL = length(dVWorld);
vec3 progress = start.xyz;
vec3 progressW = gbufferModelViewInverse[3].xyz + cameraPosition;
vec3 WsunVec = mat3(gbufferModelViewInverse) * sunVec * lightCol.a;
float SdotV = dot(sunVec,normalize(viewPosition))*lightCol.a;
/// ------------- COLOR/LIGHTING STUFF ------------- \\\
vec3 color = vec3(0.0);
vec3 absorbance = vec3(1.0);
//Mie phase + somewhat simulates multiple scattering (Horizon zero down cloud approx)
// float mie = phaseg(SdotV,0.7)*5.0 + 0.1;
float mie = fogPhase(SdotV) * 5.0;
float rayL = phaseRayleigh(SdotV);
vec3 rC = vec3(fog_coefficientRayleighR*1e-6, fog_coefficientRayleighG*1e-5, fog_coefficientRayleighB*1e-5);
vec3 mC = vec3(fog_coefficientMieR*1e-6, fog_coefficientMieG*1e-6, fog_coefficientMieB*1e-6);
// Makes fog more white idk how to simulate it correctly
vec3 LightSourceColor = LightColor;
#ifdef ambientLight_only
LightSourceColor = vec3(0.0);
#endif
vec3 skyCol0 = AmbientColor / 2.0;
// recolor change sun and sky color to a color, but make sure luminance is preserved.
vec3 skyCol0 = AmbientColor;
#ifdef PER_BIOME_ENVIRONMENT
BiomeFogColor(LightSourceColor);
BiomeFogColor(skyCol0);
#endif
// float upGradient = 1.0 - (normalize(wpos).y*0.5 + 0.5);
// skyCol0 *= exp(upGradient * -5.0)*1.5 + 0.5;
float upGradient = normalize(wpos).y*0.9+0.1;
skyCol0 = max(skyCol0 + skyCol0*upGradient,0.0);
skyCol0 = max(skyCol0 + skyCol0*(normalize(wpos).y*0.9+0.1),0.0);
float mu = 1.0;
float muS = mu;
float absorbance = 1.0;
float expFactor = 11.0;
vec3 WsunVec = mat3(gbufferModelViewInverse) * sunVec * lightCol.a;
vec3 progressW = gbufferModelViewInverse[3].xyz + cameraPosition;
float lightleakfix = clamp(pow(eyeBrightnessSmooth.y/240.,2) ,0.0,1.0);
float expFactor = 11.0;
for (int i=0;i<VL_SAMPLES;i++) {
float d = (pow(expFactor, float(i+dither)/float(VL_SAMPLES))/expFactor - 1.0/expFactor)/(1-1.0/expFactor);
float dd = pow(expFactor, float(i+dither)/float(VL_SAMPLES)) * log(expFactor) / float(VL_SAMPLES)/(expFactor-1.0);
@ -155,17 +142,13 @@ vec4 GetVolumetricFog(
sh = shadow2D(shadow, pos).x;
}
// #ifdef TEST
// lightleakfix = 1.0;
// #endif
#ifdef VL_CLOUDS_SHADOWS
sh *= GetCloudShadow_VLFOG(progressW, WsunVec);
#endif
float densityVol = cloudVol(progressW) * lightleakfix ;
float densityVol = cloudVol(progressW) * lightleakfix;
//Water droplets(fog)
float density = densityVol*mu*300.;
float density = densityVol*300.;
//Just air
vec2 airCoef = exp(-max(progressW.y - SEA_LEVEL, 0.0) / vec2(8.0e3, 1.2e3) * vec2(6.,7.0)) * 24 * Haze_amount;
@ -174,35 +157,21 @@ vec4 GetVolumetricFog(
vec3 rL = rC*airCoef.x;
vec3 m = (airCoef.y+density) * mC;
vec3 AtmosphericFog = skyCol0 * (rL*3.0 + m);
vec3 DirectLight = (LightSourceColor*sh) * (rayL*rL*3.0 + m*mie);
vec3 AmbientLight = skyCol0 * m;
// #ifdef TEST
// vec3 Lightning = vec3(0.0);
// #else
vec3 Lightning = Iris_Lightningflash_VLfog(progressW-cameraPosition, lightningBoltPosition.xyz) * m;
// #endif
vec3 AtmosphericFog = skyCol0 * (rL*3.0 + m);// + (LightSourceColor * sh) * (rayL*rL*3.0 + m*mie);
vec3 vL0 = (AtmosphericFog + AmbientLight + DirectLight + Lightning) * lightleakfix;
// vL0 = DirectLight;
// #if defined Cave_fog && defined TEST
// vL0 += cavefogCol;
// #endif
vec3 lighting = (AtmosphericFog + AmbientLight + DirectLight + Lightning) * lightleakfix;
vL += (vL0 - vL0 * exp(-(rL+m)*dd*dL)) / ((rL+m)+0.00000001)*absorbance;
absorbance *= dot(clamp(exp(-(rL+m)*dd*dL),0.0,1.0), vec3(0.333333));
color += max(lighting - lighting * exp(-(rL+m)*dd*dL),0.0) / max(rL+m, 0.00000001)*absorbance;
absorbance *= max(exp(-(rL+m)*dd*dL),0.0);
}
return vec4(vL,absorbance);
return vec4(color, dot(absorbance,vec3(0.333333)));
}
/*
/// experimental functions to render clouds and fog in 2 passes
float cloudCoverage(in vec3 pos, float minHeight, float maxHeight){
@ -355,4 +324,5 @@ vec4 renderVolumetrics(
if (absorbance < 1e-5) break;
}
return vec4(color, absorbance);
}
}
*/