mirror of
https://github.com/X0nk/Bliss-Shader.git
synced 2025-06-23 01:02:33 +08:00
Cloud fog
cloud fog?
This commit is contained in:
@ -36,7 +36,7 @@ float cloudVol(in vec3 pos){
|
||||
|
||||
TimeOfDayFog(UniformFog, CloudyFog);
|
||||
|
||||
return CloudyFog + UniformFog + RainFog;
|
||||
return CloudyFog + UniformFog;
|
||||
}
|
||||
|
||||
vec4 getVolumetricRays(
|
||||
@ -91,6 +91,7 @@ vec4 getVolumetricRays(
|
||||
float muS = mu;
|
||||
float absorbance = 1.0;
|
||||
float expFactor = 11.0;
|
||||
|
||||
vec3 WsunVec = mat3(gbufferModelViewInverse) * sunVec * lightCol.a;
|
||||
|
||||
vec3 progressW = gbufferModelViewInverse[3].xyz+cameraPosition;
|
||||
@ -100,21 +101,23 @@ vec4 getVolumetricRays(
|
||||
float dd = pow(expFactor, float(i+dither)/float(VL_SAMPLES)) * log(expFactor) / float(VL_SAMPLES)/(expFactor-1.0);
|
||||
progress = start.xyz + d*dV;
|
||||
progressW = gbufferModelViewInverse[3].xyz+cameraPosition + d*dVWorld;
|
||||
|
||||
//project into biased shadowmap space
|
||||
float distortFactor = calcDistort(progress.xy);
|
||||
vec3 pos = vec3(progress.xy*distortFactor, progress.z);
|
||||
float densityVol = cloudVol(progressW);
|
||||
float sh = 1.0;
|
||||
|
||||
if (abs(pos.x) < 1.0-0.5/2048. && abs(pos.y) < 1.0-0.5/2048){
|
||||
pos = pos*vec3(0.5,0.5,0.5/6.0)+0.5;
|
||||
sh = shadow2D( shadow, pos).x;
|
||||
}
|
||||
|
||||
|
||||
// if (abs(pos.x) < 1.0-0.5/2048. && abs(pos.y) < 1.0-0.5/2048){
|
||||
// pos = pos*vec3(0.5,0.5,0.5/6.0)+0.5;
|
||||
// sh = shadow2D( shadow, pos).x;
|
||||
// }
|
||||
|
||||
#ifdef VL_CLOUDS_SHADOWS
|
||||
sh *= GetCloudShadow_VLFOG(progressW);
|
||||
#endif
|
||||
|
||||
|
||||
//Water droplets(fog)
|
||||
float density = densityVol*ATMOSPHERIC_DENSITY*mu*300.;
|
||||
|
||||
@ -133,10 +136,202 @@ vec4 getVolumetricRays(
|
||||
vec3 rainRays = (sunColor*sh) * (rayL*phaseg(SdotV,0.5)) * clamp(pow(WsunVec.y,5)*2,0.0,1) * rainStrength * RainFog_amount;
|
||||
vec3 CaveRays = (sunColor*sh) * phaseg(SdotV,0.7) * 0.001 * (1.0 - max(eyeBrightnessSmooth.y,0)/240.);
|
||||
|
||||
vec3 vL0 = (DirectLight + AmbientLight + AtmosphericFog + rainRays) * max(eyeBrightnessSmooth.y,0)/240. + CaveRays ;
|
||||
vec3 vL0 = (DirectLight + AmbientLight + AtmosphericFog + rainRays ) * max(eyeBrightnessSmooth.y,0)/240. + CaveRays ;
|
||||
|
||||
vL += (vL0 - vL0 * exp(-(rL+m)*dd*dL)) / ((rL+m)+0.00000001)*absorbance;
|
||||
absorbance *= dot(clamp(exp(-(rL+m)*dd*dL),0.0,1.0), vec3(0.333333));
|
||||
}
|
||||
return vec4(vL,absorbance);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
vec4 InsideACloudFog(
|
||||
vec3 fragpos,
|
||||
vec2 Dither,
|
||||
vec3 SunColor,
|
||||
vec3 MoonColor,
|
||||
vec3 SkyColor
|
||||
){
|
||||
#ifndef VOLUMETRIC_CLOUDS
|
||||
return vec4(0.0,0.0,0.0,1.0);
|
||||
#endif
|
||||
|
||||
float total_extinction = 1.0;
|
||||
vec3 color = vec3(0.0);
|
||||
|
||||
//project pixel position into projected shadowmap space
|
||||
vec3 wpos = mat3(gbufferModelViewInverse) * fragpos + gbufferModelViewInverse[3].xyz;
|
||||
vec3 fragposition = mat3(shadowModelView) * wpos + shadowModelView[3].xyz;
|
||||
fragposition = diagonal3(shadowProjection) * fragposition + shadowProjection[3].xyz;
|
||||
|
||||
//project view origin into projected shadowmap space
|
||||
vec3 start = toShadowSpaceProjected(vec3(0.));
|
||||
|
||||
//rayvector into projected shadow map space
|
||||
//we can use a projected vector because its orthographic projection
|
||||
//however we still have to send it to curved shadow map space every step
|
||||
vec3 dV = fragposition-start;
|
||||
vec3 dVWorld = (wpos-gbufferModelViewInverse[3].xyz);
|
||||
|
||||
// float maxLength = min(length(dVWorld),16*8)/length(dVWorld);
|
||||
float maxLength = min(length(dVWorld),far+16)/length(dVWorld);
|
||||
dV *= maxLength;
|
||||
dVWorld *= maxLength;
|
||||
float mult = length(dVWorld)/25;
|
||||
float dL = length(dVWorld);
|
||||
|
||||
vec3 progress = start.xyz;
|
||||
vec3 progressW = gbufferModelViewInverse[3].xyz+cameraPosition;
|
||||
vec3 progress_view = vec3(0.0);
|
||||
float expFactor = 11.0;
|
||||
|
||||
////// lighitng stuff
|
||||
float shadowStep = 200.;
|
||||
vec3 dV_Sun = normalize(mat3(gbufferModelViewInverse)*sunVec)*shadowStep;
|
||||
vec3 dV_Sun_small = dV_Sun/shadowStep;
|
||||
|
||||
float SdotV = dot(sunVec,normalize(fragpos));
|
||||
|
||||
SkyColor *= clamp(abs(dV_Sun.y)/100.,0.75,1.0);
|
||||
SunColor = SunColor * clamp(dV_Sun.y ,0.0,1.0);
|
||||
MoonColor *= clamp(-dV_Sun.y,0.0,1.0);
|
||||
|
||||
vec3 Fog_SkyCol = SkyColor;
|
||||
vec3 Fog_SunCol = SunColor;
|
||||
|
||||
// if(dV_Sun.y/shadowStep < -0.1) dV_Sun = -dV_Sun;
|
||||
|
||||
float mieDay = phaseg(SdotV, 0.75) * 3.14;
|
||||
float mieDayMulti = phaseg(SdotV, 0.35) * 2;
|
||||
|
||||
vec3 sunContribution = SunColor * mieDay;
|
||||
vec3 sunContributionMulti = SunColor * mieDayMulti ;
|
||||
|
||||
float mieNight = (phaseg(-SdotV,0.8) + phaseg(-SdotV, 0.35)*4);
|
||||
vec3 moonContribution = MoonColor * mieNight;
|
||||
|
||||
float timing = 1.0 - clamp(pow(abs(dV_Sun.y)/150.0,2.0),0.0,1.0);
|
||||
|
||||
|
||||
|
||||
///////// fog part
|
||||
|
||||
//Mie phase + somewhat simulates multiple scattering (Horizon zero down cloud approx)
|
||||
float mie = phaseg(SdotV,0.7)*5.0 + 1.0;
|
||||
float rayL = phaseRayleigh(SdotV);
|
||||
|
||||
#ifdef Biome_specific_environment
|
||||
// recolor change sun and sky color to some color, but make sure luminance is preserved.
|
||||
BiomeFogColor(Fog_SunCol);
|
||||
BiomeFogColor(Fog_SkyCol);
|
||||
#endif
|
||||
|
||||
vec3 rC = vec3(fog_coefficientRayleighR*1e-6, fog_coefficientRayleighG*1e-5, fog_coefficientRayleighB*1e-5);
|
||||
vec3 mC = vec3(fog_coefficientMieR*1e-6, fog_coefficientMieG*1e-6, fog_coefficientMieB*1e-6);
|
||||
|
||||
float mu = 1.0;
|
||||
float muS = mu;
|
||||
|
||||
#ifdef Cumulus
|
||||
for (int i=0;i<VL_SAMPLES;i++) {
|
||||
float d = (pow(expFactor, float(i+Dither.x)/float(VL_SAMPLES))/expFactor - 1.0/expFactor)/(1-1.0/expFactor);
|
||||
float dd = pow(expFactor, float(i+Dither.x)/float(VL_SAMPLES)) * log(expFactor) / float(VL_SAMPLES)/(expFactor-1.0);
|
||||
progress = start.xyz + d*dV;
|
||||
progressW = gbufferModelViewInverse[3].xyz+cameraPosition + d*dVWorld;
|
||||
|
||||
//project into biased shadowmap space
|
||||
float distortFactor = calcDistort(progress.xy);
|
||||
vec3 pos = vec3(progress.xy*distortFactor, progress.z);
|
||||
float sh = 1.0;
|
||||
|
||||
if (abs(pos.x) < 1.0-0.5/2048. && abs(pos.y) < 1.0-0.5/2048){
|
||||
pos = pos*vec3(0.5,0.5,0.5/6.0)+0.5;
|
||||
sh = shadow2D( shadow, pos).x;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
#ifdef VL_CLOUDS_SHADOWS
|
||||
sh *= GetCloudShadow_VLFOG(progressW);
|
||||
#endif
|
||||
|
||||
float densityVol = cloudVol(progressW);
|
||||
//Water droplets(fog)
|
||||
float density = densityVol*ATMOSPHERIC_DENSITY*mu*300.;
|
||||
|
||||
//Just air
|
||||
vec2 airCoef = exp(-max(progressW.y-SEA_LEVEL,0.0)/vec2(8.0e3, 1.2e3)*vec2(6.,7.0)) * 24 * Haze_amount;
|
||||
|
||||
//Pbr for air, yolo mix between mie and rayleigh for water droplets
|
||||
vec3 rL = rC*airCoef.x;
|
||||
vec3 m = (airCoef.y+density)*mC;
|
||||
|
||||
vec3 DirectLight = (Fog_SunCol*sh) * (rayL*rL+m*mie);
|
||||
vec3 AmbientLight = Fog_SkyCol * m;
|
||||
vec3 AtmosphericFog = Fog_SkyCol * (rL+m) ;
|
||||
|
||||
// extra fog effects
|
||||
vec3 rainRays = (sunColor*sh) * (rayL*phaseg(SdotV,0.5)) * clamp(pow(WsunVec.y,5)*2,0.0,1) * rainStrength * RainFog_amount;
|
||||
vec3 CaveRays = (sunColor*sh) * phaseg(SdotV,0.7) * 0.001 * (1.0 - max(eyeBrightnessSmooth.y,0)/240.);
|
||||
|
||||
vec3 vL0 = (DirectLight + AmbientLight + AtmosphericFog + rainRays ) * max(eyeBrightnessSmooth.y,0)/240. + CaveRays ;
|
||||
|
||||
color += (vL0 - vL0 * exp(-(rL+m)*dd*dL)) / ((rL+m)+0.00000001)*total_extinction;
|
||||
total_extinction *= dot(clamp(exp(-(rL+m)*dd*dL),0.0,1.0), vec3(0.333333));
|
||||
|
||||
sh = 1.0; // make sure cloud shadows dont shadow the clouds hurhur
|
||||
|
||||
progress_view = progressW;
|
||||
float cumulus = GetCumulusDensity(progress_view, 1);
|
||||
|
||||
float alteredDensity = Cumulus_density * clamp(exp( (progress_view.y - (MaxCumulusHeight - 75)) / 9.0 ),0.0,1.0);
|
||||
|
||||
if(cumulus > 1e-5){
|
||||
float muE = cumulus*alteredDensity;
|
||||
|
||||
float Sunlight = 0.0;
|
||||
float MoonLight = 0.0;
|
||||
|
||||
for (int j=0; j < 3; j++){
|
||||
|
||||
vec3 shadowSamplePos = progress_view + (dV_Sun * 0.15) * (1 + Dither.y/2 + j);
|
||||
|
||||
float shadow = GetCumulusDensity(shadowSamplePos, 0) * Cumulus_density;
|
||||
|
||||
Sunlight += shadow / (1 + j);
|
||||
MoonLight += shadow;
|
||||
}
|
||||
|
||||
Sunlight += 1.0 - sh;
|
||||
MoonLight += 1.0 - sh;
|
||||
|
||||
#ifdef Altostratus
|
||||
// cast a shadow from higher clouds onto lower clouds
|
||||
vec3 HighAlt_shadowPos = progress_view + dV_Sun/abs(dV_Sun.y) * max(AltostratusHeight - progress_view.y,0.0);
|
||||
float HighAlt_shadow = GetAltostratusDensity(HighAlt_shadowPos);
|
||||
Sunlight += HighAlt_shadow;
|
||||
#endif
|
||||
|
||||
float ambientlightshadow = 1.0 - clamp(exp((progress_view.y - (MaxCumulusHeight - 50)) / 100.0),0.0,1.0) ;
|
||||
|
||||
|
||||
vec3 S = Cloud_lighting(muE, cumulus*Cumulus_density, Sunlight, MoonLight, SkyColor, sunContribution, sunContributionMulti, moonContribution, ambientlightshadow, 0, progress_view, timing);
|
||||
|
||||
|
||||
vec3 Sint = (S - S * exp(-mult*muE)) / muE;
|
||||
color += max(muE*Sint*total_extinction,0.0);
|
||||
total_extinction *= max(exp(-mult*muE),0.0);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
if (total_extinction < 1e-5) break;
|
||||
}
|
||||
#endif
|
||||
|
||||
return vec4(color, total_extinction);
|
||||
}
|
||||
|
Reference in New Issue
Block a user