intial changes for commit #495

This commit is contained in:
Xonk
2024-11-15 17:54:18 -05:00
parent b32041d4fc
commit b93d6f1a12
56 changed files with 3550 additions and 2274 deletions

View File

@ -2,9 +2,7 @@
// #if defined END_SHADER || defined NETHER_SHADER
#undef IS_LPV_ENABLED
// #endif
#ifndef OVERWORLD_SHADER
uniform float nightVision;
#endif
flat varying vec4 lightCol;
flat varying vec3 averageSkyCol;
@ -90,14 +88,33 @@ float linearizeDepthFast(const in float depth, const in float near, const in flo
flat varying vec3 refractedSunVec;
#ifdef Daily_Weather
flat varying vec4 dailyWeatherParams0;
flat varying vec4 dailyWeatherParams1;
#else
vec4 dailyWeatherParams0 = vec4(CloudLayer0_coverage, CloudLayer1_coverage, CloudLayer2_coverage, 0.0);
vec4 dailyWeatherParams1 = vec4(CloudLayer0_density, CloudLayer1_density, CloudLayer2_density, 0.0);
#endif
#define TIMEOFDAYFOG
#include "/lib/lightning_stuff.glsl"
#define CLOUDS_INTERSECT_TERRAIN
// #define CLOUDSHADOWSONLY
#include "/lib/volumetricClouds.glsl"
#include "/lib/climate_settings.glsl"
#include "/lib/overworld_fog.glsl"
// float fogPhase(float lightPoint){
// float linear = 1.0 - clamp(lightPoint*0.5+0.5,0.0,1.0);
// float linear2 = 1.0 - clamp(lightPoint,0.0,1.0);
// float exponential = exp2(pow(linear,0.3) * -15.0 ) * 1.5;
// exponential += sqrt(exp2(sqrt(linear) * -12.5));
// return exponential;
// }
#endif
#ifdef NETHER_SHADER
uniform sampler2D colortex4;
@ -190,7 +207,7 @@ float fogPhase2(float lightPoint){
return exponential;
}
vec4 waterVolumetrics_test( vec3 rayStart, vec3 rayEnd, float estEndDepth, float estSunDepth, float rayLength, float dither, vec3 waterCoefs, vec3 scatterCoef, vec3 ambient, vec3 lightSource, float VdotL){
vec4 waterVolumetrics_test( vec3 rayStart, vec3 rayEnd, float estEndDepth, float estSunDepth, float rayLength, float dither, vec3 waterCoefs, vec3 scatterCoef, vec3 ambient, vec3 lightSource, float VdotL, float lightleakFix){
int spCount = rayMarchSampleCount;
vec3 start = toShadowSpaceProjected(rayStart);
@ -207,8 +224,12 @@ vec4 waterVolumetrics_test( vec3 rayStart, vec3 rayEnd, float estEndDepth, float
vec3 wpos = mat3(gbufferModelViewInverse) * rayStart + gbufferModelViewInverse[3].xyz;
vec3 dVWorld = (wpos - gbufferModelViewInverse[3].xyz);
// vec3 dVWorld = -mat3(gbufferModelViewInverse) * (rayEnd - rayStart) * maxZ;
vec3 newabsorbance = exp(-rayLength * waterCoefs); // No need to take the integrated value
// vec3 progressW = gbufferModelViewInverse[3].xyz+cameraPosition;
#ifdef OVERWORLD_SHADER
float phase = fogPhase(VdotL) * 5.0;
#else
@ -218,13 +239,14 @@ vec4 waterVolumetrics_test( vec3 rayStart, vec3 rayEnd, float estEndDepth, float
vec3 vL = vec3(0.0);
ambient = max(ambient * (normalize(wpos).y*0.3+0.7),0.0);
float expFactor = 11.0;
for (int i=0;i<spCount;i++) {
float d = (pow(expFactor, float(i+dither)/float(spCount))/expFactor - 1.0/expFactor)/(1-1.0/expFactor);
float dd = pow(expFactor, float(i+dither)/float(spCount)) * log(expFactor) / float(spCount)/(expFactor-1.0);
vec3 progressW = start.xyz+cameraPosition+dVWorld;
// progressW = gbufferModelViewInverse[3].xyz+cameraPosition + d*dVWorld;
vec3 progressW = gbufferModelViewInverse[3].xyz + cameraPosition + d*dVWorld;
vec3 sh = vec3(1.0);
#ifdef OVERWORLD_SHADER
@ -255,24 +277,67 @@ vec4 waterVolumetrics_test( vec3 rayStart, vec3 rayEnd, float estEndDepth, float
}
#ifdef VL_CLOUDS_SHADOWS
sh *= GetCloudShadow_VLFOG(progressW,WsunVec);
sh *= GetCloudShadow(progressW, WsunVec);
#endif
#endif
vec3 sunMul = exp(-estSunDepth * d * waterCoefs * 1.1);
vec3 ambientMul = exp(-estEndDepth * d * waterCoefs );
vec3 sunAbsorbance = exp(-waterCoefs * estSunDepth * d);
vec3 ambientAbsorbance = exp(-waterCoefs * estEndDepth * d);
vec3 Directlight = ((lightSource * sh) * phase * sunMul) ;
vec3 Indirectlight = max(ambient * ambientMul, vec3(0.01,0.2,0.4) * ambientMul * MIN_LIGHT_AMOUNT * 0.03) ;
vec3 Directlight = lightSource * sh * phase * sunAbsorbance;
vec3 Indirectlight = ambient * ambientAbsorbance;
vec3 light = (Indirectlight + Directlight) * scatterCoef;
vL += (light - light * exp(-waterCoefs * dd * rayLength)) / waterCoefs * absorbance;
absorbance *= exp(-waterCoefs * dd * rayLength);
vec3 volumeCoeff = exp(-waterCoefs * dd * rayLength);
vL += (light - light * volumeCoeff) / waterCoefs * absorbance;
absorbance *= volumeCoeff;
}
// inColor += vL;
return vec4( vL, dot(newabsorbance,vec3(0.335)));
return vec4(vL, dot(absorbance,vec3(0.335)));
}
/*
void waterVolumetrics(inout vec3 inColor, vec3 rayStart, vec3 rayEnd, float estEndDepth, float estSunDepth, float rayLength, float dither, vec3 waterCoefs, vec3 scatterCoef, vec3 ambient, vec3 lightSource, float VdotL){
inColor *= exp(-rayLength * waterCoefs); //No need to take the integrated value
int spCount = rayMarchSampleCount;
vec3 start = toShadowSpaceProjected(rayStart);
vec3 end = toShadowSpaceProjected(rayEnd);
vec3 dV = (end-start);
//limit ray length at 32 blocks for performance and reducing integration error
//you can't see above this anyway
float maxZ = min(rayLength,32.0)/(1e-8+rayLength);
dV *= maxZ;
vec3 dVWorld = -mat3(gbufferModelViewInverse) * (rayEnd - rayStart) * maxZ;
rayLength *= maxZ;
estEndDepth *= maxZ;
estSunDepth *= maxZ;
vec3 absorbance = vec3(1.0);
vec3 vL = vec3(0.0);
float phase = phaseg(VdotL, Dirt_Mie_Phase);
float expFactor = 11.0;
vec3 progressW = gbufferModelViewInverse[3].xyz+cameraPosition;
for (int i=0;i<spCount;i++) {
float d = (pow(expFactor, float(i+dither)/float(spCount))/expFactor - 1.0/expFactor)/(1-1.0/expFactor);
float dd = pow(expFactor, float(i+dither)/float(spCount)) * log(expFactor) / float(spCount)/(expFactor-1.0);
vec3 spPos = start.xyz + dV*d;
progressW = gbufferModelViewInverse[3].xyz+cameraPosition + d*dVWorld;
//project into biased shadowmap space
float distortFactor = calcDistort(spPos.xy);
vec3 pos = vec3(spPos.xy*distortFactor, spPos.z);
float sh = 1.0;
if (abs(pos.x) < 1.0-0.5/2048. && abs(pos.y) < 1.0-0.5/2048){
pos = pos*vec3(0.5,0.5,0.5/6.0)+0.5;
sh = shadow2D( shadow, pos).x;
}
vec3 ambientMul = exp(-estEndDepth * d * waterCoefs * 1.1);
vec3 sunMul = exp(-estSunDepth * d * waterCoefs);
vec3 light = (sh * lightSource*8./150./3.0 * phase * sunMul + ambientMul * ambient)*scatterCoef;
vL += (light - light * exp(-waterCoefs * dd * rayLength)) / waterCoefs *absorbance;
absorbance *= exp(-dd * rayLength * waterCoefs);
}
inColor += vL;
}
*/
vec2 decodeVec2(float a){
const vec2 constant1 = 65535. / vec2( 256., 65536.);
const float constant2 = 256. / 255.;
@ -293,13 +358,16 @@ void main() {
vec2 tc = floor(gl_FragCoord.xy)/VL_RENDER_RESOLUTION*texelSize+0.5*texelSize;
bool iswater = texture2D(colortex7,tc).a > 0.99;
float alpha = texture2D(colortex7,tc).a ;
float blendedAlpha = texture2D(colortex2, tc).a;
bool iswater = alpha > 0.99;
//////////////////////////////////////////////////////////
///////////////// BEHIND OF TRANSLUCENTS /////////////////
//////////////////////////////////////////////////////////
if(texture2D(colortex2, tc).a > 0.0 || iswater){
if(blendedAlpha > 0.0 || iswater){
float noise_1 = R2_dither();
float noise_2 = blueNoise();
@ -322,78 +390,106 @@ void main() {
// vec3 lightningColor = (lightningEffect / 3) * (max(eyeBrightnessSmooth.y,0)/240.);
float dirtAmount = Dirt_Amount + 0.1;
float dirtAmount = Dirt_Amount ;
// float dirtAmount = Dirt_Amount + 0.01;
vec3 waterEpsilon = vec3(Water_Absorb_R, Water_Absorb_G, Water_Absorb_B);
vec3 dirtEpsilon = vec3(Dirt_Absorb_R, Dirt_Absorb_G, Dirt_Absorb_B);
vec3 totEpsilon = dirtEpsilon*dirtAmount + waterEpsilon;
vec3 totEpsilon = dirtEpsilon * dirtAmount + waterEpsilon;
vec3 scatterCoef = dirtAmount * vec3(Dirt_Scatter_R, Dirt_Scatter_G, Dirt_Scatter_B) / 3.14;
#ifdef BIOME_TINT_WATER
// yoink the biome tint written in this buffer for water only.
if(iswater){
vec2 translucentdata = texture2D(colortex11,tc).gb;
vec2 translucentdata = texelFetch2D(colortex11,ivec2(tc/texelSize),0).gb;
vec3 wateralbedo = normalize(vec3(decodeVec2(translucentdata.x),decodeVec2(translucentdata.y).x)+0.00001) * 0.5 + 0.5;
scatterCoef = dirtAmount * wateralbedo / 3.14;
}
#endif
vec3 directLightColor = lightCol.rgb/80.0;
vec3 indirectLightColor = averageSkyCol/30.0;
vec3 indirectLightColor_dynamic = averageSkyCol_Clouds/30.0;
// vec3 directLightColor = lightCol.rgb / 2400.0;
// vec3 indirectLightColor = averageSkyCol / 1500.0;
// vec3 indirectLightColor_dynamic = averageSkyCol_Clouds / 900.0;
vec3 directLightColor = lightCol.rgb / 2400.0;
vec3 indirectLightColor = averageSkyCol / 1200.0;
vec3 indirectLightColor_dynamic = averageSkyCol_Clouds / 900.0;
vec3 viewPos1 = toScreenSpace_DH(tc/RENDER_SCALE, z, DH_z);
vec3 viewPos0 = toScreenSpace_DH(tc/RENDER_SCALE, z0, DH_z0);
vec3 playerPos = normalize(mat3(gbufferModelViewInverse) * viewPos1);
vec3 playerPos = mat3(gbufferModelViewInverse) * viewPos1;
vec3 playerPos0 = mat3(gbufferModelViewInverse) * viewPos0;
#ifdef OVERWORLD_SHADER
// vec2 lightmap = decodeVec2(texture2D(colortex14, tc).a);
vec2 lightmap = vec2(0.0,texture2D(colortex14, tc).a);
// vec2 lightmap = vec2(0.0,texture2D(colortex14, tc).a);
vec2 lightmap = decodeVec2(texelFetch2D(colortex14,ivec2(tc/texelSize),0).x);
#ifdef DISTANT_HORIZONS
if(z >= 1.0) lightmap.y = 0.99;
#endif
#else
vec2 lightmap = decodeVec2(texture2D(colortex14, tc).a);
vec2 lightmap = decodeVec2(texelFetch2D(colortex14,ivec2(tc/texelSize),0).a);
lightmap.y = 1.0;
#endif
float Vdiff = distance(viewPos1, viewPos0) * 2.0;
float VdotU = playerPos.y;
float estimatedDepth = Vdiff * abs(VdotU) ; //assuming water plane
float estimatedSunDepth = estimatedDepth / abs(WsunVec.y); //assuming water plane
// float Vdiff = distance(viewPos1, viewPos0) * 2.0;
// float VdotU = playerPos.y;
// float estimatedDepth = Vdiff * abs(VdotU); //assuming water plane
indirectLightColor_dynamic *= ambient_brightness * pow(1.0-pow(1.0-lightmap.y,0.5),3.0) ;
// float TorchBrightness_autoAdjust = mix(1.0, 30.0, clamp(exp(-10.0*exposure),0.0,1.0)) ;
// indirectLightColor_dynamic += vec3(TORCH_R,TORCH_G,TORCH_B) * TorchBrightness_autoAdjust * pow(1.0-sqrt(1.0-clamp(lightmap.x,0.0,1.0)),2.0) * 2.0;
vec3 cloudDepth = vec3(0.0);
vec4 VolumetricFog2 = vec4(0,0,0,1);
vec4 VolumetricClouds = vec4(0,0,0,1);
float Vdiff = distance(viewPos1, viewPos0);
float estimatedDepth = Vdiff * abs(normalize(playerPos).y);
float estimatedSunDepth = (Vdiff * 0.5) / abs(WsunVec.y); //assuming water plane
Vdiff *= 2.0;
#ifdef OVERWORLD_SHADER
if(!iswater){
// Vdiff = Vdiff * (1.0 - clamp(exp(-Vdiff),0.0,1.0)) + max(estimatedDepth - 1.0,0.0);
// estimatedDepth = max(estimatedDepth - 1.0,0.0);
indirectLightColor_dynamic *= ambient_brightness * lightmap.y*lightmap.y;
#if defined CLOUDS_INTERSECT_TERRAIN
VolumetricClouds = renderClouds(viewPos1, vec2(noise_1,noise_2), directLightColor, indirectLightColor, cloudDepth);
#endif
indirectLightColor_dynamic += MIN_LIGHT_AMOUNT * 0.02 * 0.2 + nightVision*0.02;
indirectLightColor_dynamic += vec3(TORCH_R,TORCH_G,TORCH_B) * pow(1.0-sqrt(1.0-clamp(lightmap.x,0.0,1.0)),2.0) ;
vec4 finalVolumetrics = vec4(0.0,0.0,0.0,1.0);
if(!iswater){
#ifdef OVERWORLD_SHADER
vec4 VolumetricClouds = GetVolumetricClouds(viewPos1, vec2(noise_1, noise_2), WsunVec, directLightColor, indirectLightColor);
float atmosphereAlpha = 1.0;
VolumetricFog2 = GetVolumetricFog(viewPos1, vec2(noise_1, noise_2), directLightColor, indirectLightColor,indirectLightColor_dynamic, atmosphereAlpha);
VolumetricClouds.a *= atmosphereAlpha;
vec4 VolumetricFog = GetVolumetricFog(viewPos1, vec2(noise_1, noise_2), directLightColor, indirectLightColor, indirectLightColor_dynamic, atmosphereAlpha, VolumetricClouds.rgb);
finalVolumetrics = VolumetricClouds;
// VolumetricClouds.a *= atmosphereAlpha;
#endif
#if defined CLOUDS_INTERSECT_TERRAIN
VolumetricFog2 = vec4(VolumetricClouds.rgb * VolumetricFog2.a * atmosphereAlpha + VolumetricFog2.rgb, VolumetricFog2.a*VolumetricClouds.a);
#endif
}
#endif
#if defined NETHER_SHADER || defined END_SHADER
vec4 VolumetricFog = GetVolumetricFog(viewPos1, noise_1, noise_2);
#endif
// #if defined OVERWORLD_SHADER
// vec4 VolumetricFog = vec4(VolumetricClouds.rgb * VolumetricFog.a + VolumetricFog.rgb, VolumetricFog.a*VolumetricClouds.a);
// #endif
finalVolumetrics.rgb = finalVolumetrics.rgb * VolumetricFog.a + VolumetricFog.rgb;
finalVolumetrics.a *= VolumetricFog.a;
}
vec4 underwaterVlFog = vec4(0,0,0,1);
if(iswater) underwaterVlFog = waterVolumetrics_test(viewPos0, viewPos1, estimatedDepth, estimatedSunDepth, Vdiff, noise_1, totEpsilon, scatterCoef, indirectLightColor_dynamic, directLightColor* (1.0-caveDetection), dot(normalize(viewPos1), normalize(sunVec*lightCol.a)) );
vec4 fogFinal = vec4(underwaterVlFog.rgb * VolumetricFog2.a + VolumetricFog2.rgb, VolumetricFog2.a * underwaterVlFog.a);
float lightleakfix = clamp(lightmap.y + (1-caveDetection),0.0,1.0);
if(iswater && isEyeInWater != 1) underwaterVlFog = waterVolumetrics_test(viewPos0, viewPos1, estimatedDepth, estimatedSunDepth, Vdiff, noise_1, totEpsilon, scatterCoef, indirectLightColor_dynamic, directLightColor, dot(normalize(viewPos1), normalize(sunVec*lightCol.a)) ,lightleakfix);
finalVolumetrics.rgb += underwaterVlFog.rgb;
gl_FragData[0] = clamp(fogFinal, 0.0, 65000.0);
gl_FragData[0] = clamp(finalVolumetrics, 0.0, 65000.0);
}
}