mirror of
https://github.com/X0nk/Bliss-Shader.git
synced 2025-06-22 00:37:35 +08:00
redo application for ambient lighting in all dimensions. fix RTAO/SSGI in end/nether
This commit is contained in:
@ -1,98 +1,83 @@
|
||||
// in this here file im doing all the lighting for sunlight, ambient light, torches, for solids and translucents.
|
||||
|
||||
// uniform float nightVision;
|
||||
|
||||
void DoRTAmbientLighting (vec3 TorchColor, vec2 Lightmap, inout float SkyLM, inout vec3 TorchLight, inout vec3 SkyLight){
|
||||
vec3 DoAmbientLightColor(
|
||||
vec3 SkyColor,
|
||||
vec3 TorchColor,
|
||||
vec2 Lightmap
|
||||
){
|
||||
// do sky lighting.
|
||||
float skyLM = (pow(Lightmap.y,15.0)*2.0 + pow(Lightmap.y,2.5))*0.5;
|
||||
SkyColor = (SkyColor / 30.0) * ambient_brightness * skyLM;
|
||||
vec3 MinimumLight = vec3(0.2,0.4,1.0) * (MIN_LIGHT_AMOUNT*0.01 + nightVision);
|
||||
vec3 IndirectLight = max(SkyColor, MinimumLight);
|
||||
|
||||
// do torch lighting.
|
||||
float TorchLM = 10.0 - ( 1.0 / (pow(exp(-0.5*inversesqrt(Lightmap.x)),5.0)+0.1));
|
||||
TorchLM = pow(TorchLM/4,10) + pow(Lightmap.x,1.5)*0.5;
|
||||
|
||||
vec3 TorchLight = TorchColor * TORCH_AMOUNT * TorchLM;
|
||||
return IndirectLight + TorchLight;
|
||||
}
|
||||
vec4 RT_AmbientLight(
|
||||
vec3 TorchColor,
|
||||
vec2 Lightmap
|
||||
){
|
||||
float skyLM = (pow(Lightmap.y,15.0)*2.0 + pow(Lightmap.y,2.5))*0.5;
|
||||
|
||||
float TorchLM = 10.0 - ( 1.0 / (pow(exp(-0.5*inversesqrt(Lightmap.x)),5.0)+0.1));
|
||||
TorchLM = pow(TorchLM/4,10) + pow(Lightmap.x,1.5)*0.5;
|
||||
TorchLight = (TorchColor * TorchLM * 0.75) * TORCH_AMOUNT;
|
||||
vec3 TorchLight = TorchColor * TORCH_AMOUNT * TorchLM;
|
||||
|
||||
|
||||
SkyLM = (pow(Lightmap.y,15.0)*2.0 + pow(Lightmap.y,2.5))*0.5;
|
||||
|
||||
SkyLight = (SkyLight * ambient_brightness) / 30.0;
|
||||
SkyLight = max(SkyLight * SkyLM, vec3(0.2,0.4,1.0) * (MIN_LIGHT_AMOUNT*0.025 + nightVision));
|
||||
return vec4(TorchLight, skyLM);
|
||||
}
|
||||
// #ifdef NETHER_SHADER
|
||||
// vec3 DoAmbientLighting_Nether(vec3 FogColor, vec3 TorchColor, float Lightmap, vec3 Normal, vec3 np3, vec3 WorldPos){
|
||||
|
||||
#ifdef OVERWORLD_SHADER
|
||||
// float TorchLM = 10.0 - ( 1.0 / (pow(exp(-0.5*inversesqrt(Lightmap)),5.0)+0.1));
|
||||
// TorchLM = pow(TorchLM/4,10) + pow(Lightmap,1.5)*0.5; //pow(TorchLM/4.5,10)*2.5 + pow(Lightmap.x,1.5)*0.5;
|
||||
// vec3 TorchLight = TorchColor * TorchLM * 0.75;
|
||||
// TorchLight *= TORCH_AMOUNT;
|
||||
|
||||
vec3 DoAmbientLighting (vec3 SkyColor, vec3 TorchColor, vec2 Lightmap, float skyLightDir){
|
||||
// Lightmap.x = 0.0;
|
||||
// Lightmap.y = 1.0;
|
||||
|
||||
float TorchLM = 10.0 - ( 1.0 / (pow(exp(-0.5*inversesqrt(Lightmap.x)),5.0)+0.1));
|
||||
TorchLM = pow(TorchLM/4,10) + pow(Lightmap.x,1.5)*0.5; //pow(TorchLM/4.5,10)*2.5 + pow(Lightmap.x,1.5)*0.5;
|
||||
vec3 TorchLight = TorchColor * TorchLM * 0.75;
|
||||
TorchLight *= TORCH_AMOUNT;
|
||||
|
||||
SkyColor = (SkyColor * ambient_brightness) / 30.0;
|
||||
|
||||
float skyLM = (pow(Lightmap.y,15.0)*2.0 + pow(Lightmap.y,2.5))*0.5;
|
||||
vec3 SkyLight = max(SkyColor * skyLM, vec3(0.2,0.4,1.0) * (MIN_LIGHT_AMOUNT*0.01 + nightVision) );
|
||||
|
||||
return SkyLight * skyLightDir + TorchLight;
|
||||
}
|
||||
|
||||
vec3 DoDirectLighting(vec3 SunColor, float Shadow, float NdotL, float SubsurfaceScattering){
|
||||
|
||||
vec3 SunLight = NdotL * Shadow * SunColor;
|
||||
|
||||
return SunLight;
|
||||
}
|
||||
// FogColor = max(FogColor, vec3(0.05) * MIN_LIGHT_AMOUNT*0.01 + nightVision);
|
||||
|
||||
#endif
|
||||
// return FogColor + TorchLight ;
|
||||
// }
|
||||
// #endif
|
||||
|
||||
#ifdef NETHER_SHADER
|
||||
vec3 DoAmbientLighting_Nether(vec3 FogColor, vec3 TorchColor, float Lightmap, vec3 Normal, vec3 np3, vec3 WorldPos){
|
||||
// #ifdef END_SHADER
|
||||
// vec3 DoAmbientLighting_End(vec3 FogColor, vec3 TorchColor, float Lightmap, vec3 Normal, vec3 np3){
|
||||
|
||||
float TorchLM = 10.0 - ( 1.0 / (pow(exp(-0.5*inversesqrt(Lightmap)),5.0)+0.1));
|
||||
TorchLM = pow(TorchLM/4,10) + pow(Lightmap,1.5)*0.5; //pow(TorchLM/4.5,10)*2.5 + pow(Lightmap.x,1.5)*0.5;
|
||||
vec3 TorchLight = TorchColor * TorchLM * 0.75;
|
||||
TorchLight *= TORCH_AMOUNT;
|
||||
|
||||
FogColor = max(FogColor, vec3(0.05) * MIN_LIGHT_AMOUNT*0.01 + nightVision);
|
||||
|
||||
return FogColor + TorchLight ;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef END_SHADER
|
||||
vec3 DoAmbientLighting_End(vec3 FogColor, vec3 TorchColor, float Lightmap, vec3 Normal, vec3 np3){
|
||||
|
||||
float TorchLM = 10.0 - ( 1.0 / (pow(exp(-0.5*inversesqrt(Lightmap)),5.0)+0.1));
|
||||
TorchLM = pow(TorchLM/4,10) + pow(Lightmap,1.5)*0.5;
|
||||
vec3 TorchLight = TorchColor * TorchLM * 0.75;
|
||||
TorchLight *= TORCH_AMOUNT;
|
||||
// float TorchLM = 10.0 - ( 1.0 / (pow(exp(-0.5*inversesqrt(Lightmap)),5.0)+0.1));
|
||||
// TorchLM = pow(TorchLM/4,10) + pow(Lightmap,1.5)*0.5;
|
||||
// vec3 TorchLight = TorchColor * TorchLM * 0.75;
|
||||
// TorchLight *= TORCH_AMOUNT;
|
||||
|
||||
|
||||
FogColor = FogColor / max(dot(FogColor,vec3(0.3333)),0.05);
|
||||
// FogColor = FogColor / max(dot(FogColor,vec3(0.3333)),0.05);
|
||||
|
||||
vec3 FogTint = FogColor*clamp(1.1 + dot(Normal,np3),0.0,1.0) * 0.1;
|
||||
// vec3 FogTint = FogColor*clamp(1.1 + dot(Normal,np3),0.0,1.0) * 0.1;
|
||||
|
||||
vec3 AmbientLight = max(vec3(0.5,0.75,1.0)* 0.1, (MIN_LIGHT_AMOUNT*0.01 + nightVision*0.5) );
|
||||
// vec3 AmbientLight = max(vec3(0.5,0.75,1.0)* 0.1, (MIN_LIGHT_AMOUNT*0.01 + nightVision*0.5) );
|
||||
|
||||
|
||||
return TorchLight + AmbientLight;// + AmbientLight + FogTint;
|
||||
}
|
||||
// return TorchLight + AmbientLight;// + AmbientLight + FogTint;
|
||||
// }
|
||||
|
||||
#endif
|
||||
// #endif
|
||||
|
||||
#ifdef FALLBACK_SHADER
|
||||
vec3 DoAmbientLighting_Fallback(vec3 Color, vec3 TorchColor, float Lightmap, vec3 Normal, vec3 p3){
|
||||
// #ifdef FALLBACK_SHADER
|
||||
// vec3 DoAmbientLighting_Fallback(vec3 Color, vec3 TorchColor, float Lightmap, vec3 Normal, vec3 p3){
|
||||
|
||||
float TorchLM = 10.0 - ( 1.0 / (pow(exp(-0.5*inversesqrt(Lightmap)),5.0)+0.1));
|
||||
TorchLM = pow(TorchLM/4,10) + pow(Lightmap,1.5)*0.5;
|
||||
vec3 TorchLight = TorchColor * TorchLM * 0.75;
|
||||
TorchLight *= TORCH_AMOUNT;
|
||||
// float TorchLM = 10.0 - ( 1.0 / (pow(exp(-0.5*inversesqrt(Lightmap)),5.0)+0.1));
|
||||
// TorchLM = pow(TorchLM/4,10) + pow(Lightmap,1.5)*0.5;
|
||||
// vec3 TorchLight = TorchColor * TorchLM * 0.75;
|
||||
// TorchLight *= TORCH_AMOUNT;
|
||||
|
||||
float NdotL = clamp(-dot(Normal,normalize(p3)),0.0,1.0);
|
||||
// float NdotL = clamp(-dot(Normal,normalize(p3)),0.0,1.0);
|
||||
|
||||
float PlayerLight = exp( (1.0-clamp(1.0 - length(p3) / 32.0,0.0,1.0)) *-10.0);
|
||||
// vec3 AmbientLight = TorchColor * PlayerLight * NdotL;
|
||||
vec3 AmbientLight = vec3(0.5,0.3,1.0)*0.2 * (Normal.y*0.5+0.6);
|
||||
// float PlayerLight = exp( (1.0-clamp(1.0 - length(p3) / 32.0,0.0,1.0)) *-10.0);
|
||||
// // vec3 AmbientLight = TorchColor * PlayerLight * NdotL;
|
||||
// vec3 AmbientLight = vec3(0.5,0.3,1.0)*0.2 * (Normal.y*0.5+0.6);
|
||||
|
||||
|
||||
return TorchLight + AmbientLight;// + AmbientLight + FogTint;
|
||||
}
|
||||
#endif
|
||||
// return TorchLight + AmbientLight;// + AmbientLight + FogTint;
|
||||
// }
|
||||
// #endif
|
@ -215,7 +215,18 @@ vec3 RT(vec3 dir, vec3 position, float noise, float stepsizes){
|
||||
return vec3(1.1);
|
||||
}
|
||||
|
||||
void ApplySSRT(inout vec3 lighting, vec3 normal, vec3 noise, vec3 viewPos, vec2 lightmaps, vec3 skylightcolor, vec3 torchcolor, bool isGrass){
|
||||
void ApplySSRT(
|
||||
inout vec3 lighting,
|
||||
vec3 viewPos,
|
||||
vec3 normal,
|
||||
vec3 noise,
|
||||
|
||||
vec2 lightmaps,
|
||||
vec3 skylightcolor,
|
||||
vec3 torchcolor,
|
||||
|
||||
bool isGrass
|
||||
){
|
||||
int nrays = RAY_COUNT;
|
||||
|
||||
vec3 radiance = vec3(0.0);
|
||||
@ -225,11 +236,10 @@ void ApplySSRT(inout vec3 lighting, vec3 normal, vec3 noise, vec3 viewPos, vec2
|
||||
|
||||
vec3 occlusion2 = vec3(0.0);
|
||||
vec3 skycontribution2 = vec3(0.0);
|
||||
|
||||
float skyLM = 0.0;
|
||||
vec3 torchlight = vec3(0.0);
|
||||
DoRTAmbientLighting(torchcolor, lightmaps, skyLM, torchlight, skylightcolor);
|
||||
|
||||
// rgb = torch color * lightmap. a = sky lightmap.
|
||||
vec4 Lighting = RT_AmbientLight(torchcolor, lightmaps);
|
||||
skylightcolor = (skylightcolor/15.0) * Lighting.a;
|
||||
|
||||
for (int i = 0; i < nrays; i++){
|
||||
int seed = (frameCounter%40000)*nrays+i;
|
||||
@ -243,15 +253,23 @@ void ApplySSRT(inout vec3 lighting, vec3 normal, vec3 noise, vec3 viewPos, vec2
|
||||
#endif
|
||||
|
||||
#ifdef SKY_CONTRIBUTION_IN_SSRT
|
||||
if(isGrass) rayDir.y = clamp(rayDir.y + 0.5,-1,1);
|
||||
skycontribution = (skyCloudsFromTex(rayDir, colortex4).rgb / 15.0) * skyLM + torchlight;
|
||||
#ifdef OVERWORLD_SHADER
|
||||
if(isGrass) rayDir.y = clamp(rayDir.y + 0.5,-1,1);
|
||||
|
||||
skycontribution = (skyCloudsFromTexLOD(rayDir, colortex4, 0).rgb / 10.0) * Lighting.a + Lighting.rgb;
|
||||
#else
|
||||
skycontribution = (skyCloudsFromTexLOD2(rayDir, colortex4, 6).rgb / 10.0) * Lighting.a + Lighting.rgb;
|
||||
#endif
|
||||
#else
|
||||
if(isGrass) rayDir.y = clamp(rayDir.y + 0.25,-1,1);
|
||||
|
||||
skycontribution = skylightcolor * 2 * (max(rayDir.y,0.0)*0.9+0.1) + torchlight;
|
||||
|
||||
#ifdef OVERWORLD_SHADER
|
||||
if(isGrass) rayDir.y = clamp(rayDir.y + 0.25,-1,1);
|
||||
#endif
|
||||
|
||||
skycontribution = skylightcolor * (max(rayDir.y,0.0)*0.9+0.1) + Lighting.rgb;
|
||||
|
||||
#if indirect_effect == 4
|
||||
skycontribution2 = skylightcolor + torchlight;
|
||||
skycontribution2 = skylightcolor + Lighting.rgb;
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
@ -226,10 +226,10 @@ void DoSpecularReflections(
|
||||
// apply background reflections to the final color. make sure it does not exist based on the lightmap
|
||||
#ifdef Sky_reflection
|
||||
|
||||
#ifndef OVERWORLD_SHADER
|
||||
if(hasReflections) Background_Reflection = (skyCloudsFromTexLOD2(L, colortex4, sqrt(Roughness) * 6.0).rgb / 30.0) * Metals;
|
||||
#else
|
||||
#ifdef OVERWORLD_SHADER
|
||||
if(hasReflections) Background_Reflection = (skyCloudsFromTexLOD(L, colortex4, sqrt(Roughness) * 9.0).rgb / 30.0) * Metals;
|
||||
#else
|
||||
if(hasReflections) Background_Reflection = (skyCloudsFromTexLOD2(L, colortex4, sqrt(Roughness) * 6.0).rgb / 30.0) * Metals;
|
||||
#endif
|
||||
|
||||
// take fresnel and lightmap levels into account and write to the final color
|
||||
|
Reference in New Issue
Block a user