#include "/lib/settings.glsl" // #if defined END_SHADER || defined NETHER_SHADER #undef IS_LPV_ENABLED // #endif uniform float nightVision; flat varying vec4 lightCol; flat varying vec3 averageSkyCol; flat varying vec3 averageSkyCol_Clouds; flat varying float exposure; // uniform int dhRenderDistance; uniform sampler2D noisetex; uniform sampler2D depthtex0; uniform sampler2D depthtex1; #ifdef DISTANT_HORIZONS uniform sampler2D dhDepthTex; uniform sampler2D dhDepthTex1; #endif uniform sampler2D colortex2; uniform sampler2D colortex3; // uniform sampler2D colortex4; uniform sampler2D colortex6; uniform sampler2D colortex7; uniform sampler2D colortex11; uniform sampler2D colortex14; flat varying vec3 WsunVec; uniform vec3 sunVec; uniform float sunElevation; // uniform float far; uniform float dhFarPlane; uniform float dhNearPlane; uniform float near; uniform int frameCounter; uniform float frameTimeCounter; // varying vec2 texcoord; uniform vec2 texelSize; // flat varying vec2 TAA_Offset; uniform int isEyeInWater; uniform float rainStrength; uniform ivec2 eyeBrightnessSmooth; uniform float eyeAltitude; uniform float caveDetection; uniform mat4 gbufferPreviousModelView; uniform vec3 previousCameraPosition; #define DHVLFOG #define diagonal3(m) vec3((m)[0].x, (m)[1].y, m[2].z) #define projMAD(m, v) (diagonal3(m) * (v) + (m)[3].xyz) #include "/lib/color_transforms.glsl" #include "/lib/color_dither.glsl" #include "/lib/projections.glsl" #include "/lib/res_params.glsl" #include "/lib/sky_gradient.glsl" #include "/lib/Shadow_Params.glsl" #include "/lib/waterBump.glsl" #include "/lib/DistantHorizons_projections.glsl" float DH_ld(float dist) { return (2.0 * near) / (dhFarPlane + dhNearPlane - dist * (dhFarPlane - dhNearPlane)); } float DH_inv_ld (float lindepth){ return -((2.0*dhNearPlane/lindepth)-dhFarPlane-dhNearPlane)/(dhFarPlane-dhNearPlane); } float linearizeDepthFast(const in float depth, const in float near, const in float far) { return (near * far) / (depth * (near - far) + far); } #ifdef OVERWORLD_SHADER const bool shadowHardwareFiltering = true; uniform sampler2DShadow shadow; #ifdef TRANSLUCENT_COLORED_SHADOWS uniform sampler2D shadowcolor0; uniform sampler2DShadow shadowtex0; uniform sampler2DShadow shadowtex1; #endif flat varying vec3 refractedSunVec; #include "/lib/scene_controller.glsl" #include "/lib/diffuse_lighting.glsl" #define TIMEOFDAYFOG #include "/lib/lightning_stuff.glsl" #define CLOUDS_INTERSECT_TERRAIN // #define CLOUDSHADOWSONLY #include "/lib/volumetricClouds.glsl" #include "/lib/climate_settings.glsl" #include "/lib/overworld_fog.glsl" #endif #ifdef NETHER_SHADER uniform sampler2D colortex4; #include "/lib/nether_fog.glsl" #endif #ifdef END_SHADER uniform sampler2D colortex4; #include "/lib/end_fog.glsl" #endif #define fsign(a) (clamp((a)*1e35,0.,1.)*2.-1.) vec4 blueNoise(vec2 coord){ return texelFetch2D(colortex6, ivec2(coord)%512 , 0) ; } float blueNoise(){ return fract(texelFetch2D(noisetex, ivec2(gl_FragCoord.xy)%512, 0).a+ 1.0/1.6180339887 * frameCounter ); } float interleaved_gradientNoise(){ return fract(52.9829189*fract(0.06711056*gl_FragCoord.x + 0.00583715*gl_FragCoord.y)+ 1.0/1.6180339887 * frameCounter); } float R2_dither(){ #ifdef TAA vec2 coord = gl_FragCoord.xy + (frameCounter%40000) * 2.0; #else vec2 coord = gl_FragCoord.xy; #endif vec2 alpha = vec2(0.75487765, 0.56984026); return fract(alpha.x * coord.x + alpha.y * coord.y ) ; } vec2 R2_samples(int n){ vec2 alpha = vec2(0.75487765, 0.56984026); return fract(alpha * n); } float fogPhase2(float lightPoint){ float linear = 1.0 - clamp(lightPoint*0.5+0.5,0.0,1.0); float linear2 = 1.0 - clamp(lightPoint,0.0,1.0); float exponential = exp2(pow(linear,0.3) * -15.0 ) * 1.5; exponential += sqrt(exp2(sqrt(linear) * -12.5)); return exponential; } vec4 waterVolumetrics( vec3 rayStart, vec3 rayEnd, float estEndDepth, float estSunDepth, float rayLength, float dither, vec3 waterCoefs, vec3 scatterCoef, vec3 ambient, vec3 lightSource, float VdotL, float lightleakFix){ int spCount = rayMarchSampleCount; vec3 start = toShadowSpaceProjected(rayStart); vec3 end = toShadowSpaceProjected(rayEnd); vec3 dV = (end-start); //limit ray length at 32 blocks for performance and reducing integration error //you can't see above this anyway float maxZ = min(rayLength,12.0)/(1e-8+rayLength); dV *= maxZ; rayLength *= maxZ; estEndDepth *= maxZ; estSunDepth *= maxZ; vec3 wpos = mat3(gbufferModelViewInverse) * rayStart + gbufferModelViewInverse[3].xyz; vec3 dVWorld = (wpos - gbufferModelViewInverse[3].xyz); #ifdef OVERWORLD_SHADER float phase = fogPhase(VdotL) * 5.0; #else float phase = 1.0; #endif vec3 absorbance = vec3(1.0); vec3 vL = vec3(0.0); float expFactor = 11.0; vec3 sh = vec3(1.0); // do this outside raymarch loop, masking the water surface is good enough #if defined OVERWORLD_SHADER sh *= GetCloudShadow(wpos+cameraPosition, WsunVec); #endif float thing = -normalize(dVWorld).y; thing = clamp(thing - 0.333,0.0,1.0); thing = pow(1.0-pow(1.0-thing,2.0),2.0); thing *= 15.0; for (int i=0;i pos.z && sh.x < 1.0){ vec4 translucentShadow = texture2D(shadowcolor0, pos.xy); if(translucentShadow.a < 0.9) sh = normalize(translucentShadow.rgb+0.0001); } #else sh *= vec3(shadow2D(shadow, pos).x); #endif } #endif vec3 sunAbsorbance = exp(-waterCoefs * estSunDepth * d); vec3 ambientAbsorbance = exp(-waterCoefs * (estEndDepth * d + thing)); vec3 Directlight = lightSource * sh * phase * sunAbsorbance; vec3 Indirectlight = ambient * ambientAbsorbance; vec3 light = (Indirectlight + Directlight) * scatterCoef; vec3 volumeCoeff = exp(-waterCoefs * dd * rayLength); vL += (light - light * volumeCoeff) / waterCoefs * absorbance; absorbance *= volumeCoeff; } return vec4(vL, dot(absorbance,vec3(0.335))); } vec2 decodeVec2(float a){ const vec2 constant1 = 65535. / vec2( 256., 65536.); const float constant2 = 256. / 255.; return fract( a * constant1 ) * constant2 ; } //////////////////////////////VOID MAIN////////////////////////////// //////////////////////////////VOID MAIN////////////////////////////// //////////////////////////////VOID MAIN////////////////////////////// //////////////////////////////VOID MAIN////////////////////////////// //////////////////////////////VOID MAIN////////////////////////////// void main() { /* RENDERTARGETS:13 */ gl_FragData[0] = vec4(0,0,0,1); vec2 tc = floor(gl_FragCoord.xy)/VL_RENDER_RESOLUTION*texelSize+0.5*texelSize; float alpha = texture2D(colortex7,tc).a ; float blendedAlpha = texture2D(colortex2, tc).a; bool iswater = alpha > 0.99; ////////////////////////////////////////////////////////// ///////////////// BEHIND OF TRANSLUCENTS ///////////////// ////////////////////////////////////////////////////////// if(blendedAlpha > 0.0 || iswater){ float noise_1 = R2_dither(); float noise_2 = blueNoise(); float z0 = texelFetch2D(depthtex0, ivec2((floor(gl_FragCoord.xy - 0.5)/VL_RENDER_RESOLUTION*texelSize)/texelSize), 0 ).x; #ifdef DISTANT_HORIZONS float DH_z0 = texelFetch2D(dhDepthTex, ivec2((floor(gl_FragCoord.xy - 0.5)/VL_RENDER_RESOLUTION*texelSize)/texelSize), 0 ).x;//texture2D(dhDepthTex,tc).x; #else float DH_z0 = 0.0; #endif float z = texelFetch2D(depthtex1, ivec2((floor(gl_FragCoord.xy - 0.5)/VL_RENDER_RESOLUTION*texelSize)/texelSize), 0 ).x; #ifdef DISTANT_HORIZONS // float DH_z = texture2D(dhDepthTex1,tc).x; float DH_z = texelFetch2D(dhDepthTex1, ivec2((floor(gl_FragCoord.xy - 0.5)/VL_RENDER_RESOLUTION*texelSize)/texelSize), 0 ).x;//texture2D(dhDepthTex,tc).x; #else float DH_z = 0.0; #endif // vec3 lightningColor = (lightningEffect / 3) * (max(eyeBrightnessSmooth.y,0)/240.); float dirtAmount = Dirt_Amount ; // float dirtAmount = Dirt_Amount + 0.01; vec3 waterEpsilon = vec3(Water_Absorb_R, Water_Absorb_G, Water_Absorb_B); vec3 dirtEpsilon = vec3(Dirt_Absorb_R, Dirt_Absorb_G, Dirt_Absorb_B); vec3 totEpsilon = vec3(Water_Absorb_R, Water_Absorb_G, Water_Absorb_B);//dirtEpsilon * dirtAmount + waterEpsilon; vec3 scatterCoef = dirtAmount * vec3(Dirt_Scatter_R, Dirt_Scatter_G, Dirt_Scatter_B) / 3.14; #ifdef BIOME_TINT_WATER // yoink the biome tint written in this buffer for water only. if(iswater){ vec2 data = texelFetch2D(colortex11,ivec2(tc/texelSize),0).gb; vec3 wateralbedo = vec3(decodeVec2(data.x),decodeVec2(data.y).r); scatterCoef = dirtAmount * normalize(wateralbedo.rgb+1e-7) / 3.14; } #endif vec3 directLightColor = lightCol.rgb / 2400.0; vec3 indirectLightColor = averageSkyCol / 1200.0; vec3 indirectLightColor_dynamic = averageSkyCol_Clouds / 1200.0; vec3 viewPos1 = toScreenSpace_DH(tc/RENDER_SCALE, z, DH_z); vec3 viewPos0 = toScreenSpace_DH(tc/RENDER_SCALE, z0, DH_z0); vec3 playerPos = mat3(gbufferModelViewInverse) * viewPos1; vec3 playerPos0 = mat3(gbufferModelViewInverse) * viewPos0; #ifdef OVERWORLD_SHADER vec2 lightmap = decodeVec2(texelFetch2D(colortex14,ivec2(tc/texelSize),0).x); #ifdef DISTANT_HORIZONS if(z >= 1.0) lightmap.y = 0.99; #endif #else vec2 lightmap = decodeVec2(texelFetch2D(colortex14,ivec2(tc/texelSize),0).a); lightmap.y = 1.0; #endif float Vdiff = distance(viewPos1, viewPos0); float estimatedDepth = Vdiff * abs(normalize(playerPos).y); float estimatedSunDepth = Vdiff / abs(WsunVec.y); //assuming water plane indirectLightColor_dynamic *= ambient_brightness * lightmap.y*lightmap.y; indirectLightColor_dynamic += MIN_LIGHT_AMOUNT * 0.02 * 0.2 + nightVision*0.02; indirectLightColor_dynamic += vec3(TORCH_R,TORCH_G,TORCH_B) * pow(1.0-sqrt(1.0-clamp(lightmap.x,0.0,1.0)),2.0) * TORCH_AMOUNT; vec4 finalVolumetrics = vec4(0.0,0.0,0.0,1.0); float cloudPlaneDistance = 0.0; #ifdef OVERWORLD_SHADER vec4 VolumetricClouds = GetVolumetricClouds(viewPos1, vec2(noise_1, noise_2), WsunVec, directLightColor, indirectLightColor, cloudPlaneDistance); float atmosphereAlpha = 1.0; vec4 VolumetricFog = GetVolumetricFog(viewPos1, WsunVec, vec2(noise_1, noise_2), directLightColor, indirectLightColor, indirectLightColor_dynamic, atmosphereAlpha, VolumetricClouds.rgb,cloudPlaneDistance); finalVolumetrics.rgb += VolumetricClouds.rgb; finalVolumetrics.a *= VolumetricClouds.a; #endif #if defined NETHER_SHADER || defined END_SHADER vec4 VolumetricFog = GetVolumetricFog(viewPos1, noise_1, noise_2); #endif finalVolumetrics.rgb = finalVolumetrics.rgb * VolumetricFog.a + VolumetricFog.rgb; finalVolumetrics.a *= VolumetricFog.a; vec4 underwaterVlFog = vec4(0,0,0,1); float lightleakfix = clamp(lightmap.y + (1-caveDetection),0.0,1.0); if(iswater && isEyeInWater != 1) { vec4 underWaterFog = waterVolumetrics(viewPos0, viewPos1, estimatedDepth, estimatedSunDepth, Vdiff, noise_1, totEpsilon, scatterCoef, indirectLightColor_dynamic, directLightColor, dot(normalize(viewPos1), normalize(sunVec*lightCol.a)) ,lightleakfix); finalVolumetrics.rgb = finalVolumetrics.rgb * underWaterFog.a*underWaterFog.a + underWaterFog.rgb; finalVolumetrics.a *= underWaterFog.a; } gl_FragData[0] = clamp(finalVolumetrics, 0.0, 65000.0); } }