uniform float noPuddleAreas; float densityAtPosFog(in vec3 pos){ pos /= 18.; pos.xz *= 0.5; vec3 p = floor(pos); vec3 f = fract(pos); f = (f*f) * (3.-2.*f); vec2 uv = p.xz + f.xz + p.y * vec2(0.0,193.0); vec2 coord = uv / 512.0; vec2 xy = texture2D(noisetex, coord).yx; return mix(xy.r,xy.g, f.y); } float cloudVol(in vec3 pos, float maxDistance ){ vec3 samplePos = pos*vec3(1.0,1./24.,1.0); vec3 samplePos2 = pos*vec3(1.0,1./48.,1.0); float fogYstart = FOG_START_HEIGHT+3; float mult = exp( -max((pos.y - fogYstart) / 35.,0.0)); float fog_shape = 1.0 - densityAtPosFog(samplePos * 24.0 ); float fog_eroded = 1.0 - densityAtPosFog(samplePos2 * 200.0 ); // float CloudyFog = max( (fog_shape*2.0 - fog_eroded*0.5) - 1.2, max(fog_shape-0.8,0.0)) * mult; float heightlimit = exp2( -max((pos.y - fogYstart * (1.0+snowStorm)) / 25.,0.0)); float CloudyFog = max((fog_shape*1.2 - fog_eroded*0.2) - 0.75,0.0) * heightlimit ; float UniformFog = exp( max(pos.y - fogYstart,0.0) / -25); // UniformFog = 1.0; float RainFog = ((2 + max(fog_shape*10. - 7.0,0.5)*2.0)) *UniformFog* rainStrength * noPuddleAreas * RainFog_amount; // float RainFog = (CloudyFog*255) * rainStrength * noPuddleAreas * RainFog_amount; #ifdef PER_BIOME_ENVIRONMENT // sandstorms and snowstorms if(sandStorm > 0 || snowStorm > 0) CloudyFog = mix(CloudyFog, max(densityAtPosFog((samplePos2 - vec3(frameTimeCounter,0,frameTimeCounter)*10) * 100.0 ) - 0.2,0.0) * heightlimit, sandStorm+snowStorm); #endif TimeOfDayFog(UniformFog, CloudyFog, maxDistance); float noise = densityAtPosFog(samplePos * 12.0); float erosion = 1.0-densityAtPosFog(samplePos2 * (125 - (1-pow(1-noise,5))*25)); // float clumpyFog = max(exp(noise * -5)*2 - (erosion*erosion), 0.0); // float testfogshapes = clumpyFog*30; // return testfogshapes; // return max(exp( max(pos.y - 90,0.0) / -1), 0.0) * 100; return CloudyFog + UniformFog + RainFog; } float phaseRayleigh(float cosTheta) { const vec2 mul_add = vec2(0.1, 0.28) / acos(-1.0); return cosTheta * mul_add.x + mul_add.y; // optimized version from [Elek09], divided by 4 pi for energy conservation } float fogPhase(float lightPoint){ float linear = 1.0 - clamp(lightPoint*0.5+0.5,0.0,1.0); float linear2 = 1.0 - clamp(lightPoint,0.0,1.0); float exponential = exp2(pow(linear,0.3) * -15.0 ) * 1.5; exponential += sqrt(exp2(sqrt(linear) * -12.5)); return exponential; } vec4 GetVolumetricFog( vec3 viewPosition, vec2 dither, vec3 LightColor, vec3 AmbientColor ){ #ifndef TOGGLE_VL_FOG return vec4(0.0,0.0,0.0,1.0); #endif int SAMPLECOUNT = VL_SAMPLES; /// ------------- RAYMARCHING STUFF ------------- \\\ //project pixel position into projected shadowmap space vec3 wpos = mat3(gbufferModelViewInverse) * viewPosition + gbufferModelViewInverse[3].xyz; vec3 fragposition = mat3(shadowModelView) * wpos + shadowModelView[3].xyz; fragposition = diagonal3(shadowProjection) * fragposition + shadowProjection[3].xyz; //project view origin into projected shadowmap space vec3 start = toShadowSpaceProjected(vec3(0.0)); //rayvector into projected shadow map space //we can use a projected vector because its orthographic projection //however we still have to send it to curved shadow map space every step vec3 dV = fragposition - start; vec3 dVWorld = (wpos-gbufferModelViewInverse[3].xyz); #ifdef DISTANT_HORIZONS float maxLength = min(length(dVWorld), max(dhFarPlane-1000,0.0))/length(dVWorld); SAMPLECOUNT += SAMPLECOUNT; #else float maxLength = min(length(dVWorld), far)/length(dVWorld); #endif dV *= maxLength; dVWorld *= maxLength; float dL = length(dVWorld); float mult = length(dVWorld)/25; vec3 progress = start.xyz; vec3 progressW = gbufferModelViewInverse[3].xyz + cameraPosition; vec3 WsunVec = mat3(gbufferModelViewInverse) * sunVec * lightCol.a; float SdotV = dot(sunVec,normalize(viewPosition))*lightCol.a; /// ------------- COLOR/LIGHTING STUFF ------------- \\\ vec3 color = vec3(0.0); vec3 absorbance = vec3(1.0); ///// ----- fog lighting //Mie phase + somewhat simulates multiple scattering (Horizon zero down cloud approx) float mie = fogPhase(SdotV) * 5.0; float rayL = phaseRayleigh(SdotV); vec3 rC = vec3(sky_coefficientRayleighR*1e-6, sky_coefficientRayleighG*1e-5, sky_coefficientRayleighB*1e-5); vec3 mC = vec3(fog_coefficientMieR*1e-6, fog_coefficientMieG*1e-6, fog_coefficientMieB*1e-6); vec3 skyLightPhased = AmbientColor; vec3 LightSourcePhased = LightColor; #ifdef ambientLight_only LightSourcePhased = vec3(0.0); #endif #ifdef PER_BIOME_ENVIRONMENT vec3 biomeDirect = LightSourcePhased; vec3 biomeIndirect = skyLightPhased; float inBiome = BiomeVLFogColors(biomeDirect, biomeIndirect); #endif skyLightPhased = max(skyLightPhased + skyLightPhased*(normalize(wpos).y*0.9+0.1),0.0); LightSourcePhased *= mie; float lightleakfix = clamp(pow(eyeBrightnessSmooth.y/240.,2) ,0.0,1.0); #ifdef RAYMARCH_CLOUDS_WITH_FOG vec3 SkyLightColor = AmbientColor; vec3 LightSourceColor = LightColor; #ifdef ambientLight_only LightSourceColor = vec3(0.0); #endif float shadowStep = 200.0; vec3 dV_Sun = WsunVec*shadowStep; float mieDay = phaseg(SdotV, 0.75); float mieDayMulti = (phaseg(SdotV, 0.35) + phaseg(-SdotV, 0.35) * 0.5) ; vec3 directScattering = LightSourceColor * mieDay * 3.14; vec3 directMultiScattering = LightSourceColor * mieDayMulti * 3.14; vec3 sunIndirectScattering = LightSourceColor * phaseg(dot(mat3(gbufferModelView)*vec3(0,1,0),normalize(viewPosition)), 0.5) * 3.14; #endif #ifdef DISTANT_HORIZONS float atmosphereMult = 1.0; #else float atmosphereMult = 1.5; #endif float expFactor = 11.0; for (int i=0;i pos.z && sh.x < 1.0){ vec4 translucentShadow = texture2D(shadowcolor0, pos.xy); if(translucentShadow.a < 0.9) sh = normalize(translucentShadow.rgb+0.0001); } #else sh = vec3(shadow2D(shadow, pos).x); #endif } // float sh2 = sh; #ifdef VL_CLOUDS_SHADOWS // if(clamp(progressW.y - CloudLayer1_height,0.0,1.0) < 1.0 && clamp(progressW.y-50,0.0,1.0) > 0.0) sh *= GetCloudShadow_VLFOG(progressW, WsunVec); #endif #ifdef PER_BIOME_ENVIRONMENT float maxDistance = inBiome * min(max(1.0 - length(d*dVWorld.xz)/(32*8),0.0)*2.0,1.0); float densityVol = cloudVol(progressW, maxDistance) * lightleakfix; #else float densityVol = cloudVol(progressW, 0.0) * lightleakfix; #endif //Water droplets(fog) float density = densityVol*300.0; ///// ----- main fog lighting //Just air vec2 airCoef = exp(-max(progressW.y - SEA_LEVEL, 0.0) / vec2(8.0e3, 1.2e3) * vec2(6.,7.0)) * (atmosphereMult * 24.0) * Haze_amount * clamp(CloudLayer0_height - progressW.y + max(eyeAltitude-(CloudLayer0_height-50),0),0.0,1.0); //Pbr for air, yolo mix between mie and rayleigh for water droplets vec3 rL = rC*airCoef.x; vec3 m = (airCoef.y+density) * mC; #ifdef PER_BIOME_ENVIRONMENT vec3 Atmosphere = mix(skyLightPhased, biomeDirect, maxDistance) * (rL + m); // not pbr so just make the atmosphere also dense fog heh vec3 DirectLight = mix(LightSourcePhased, biomeIndirect, maxDistance) * sh * (rL*rayL + m); #else vec3 Atmosphere = skyLightPhased * (rL + m); // not pbr so just make the atmosphere also dense fog heh vec3 DirectLight = LightSourcePhased * sh * (rL*rayL + m); #endif vec3 Lightning = Iris_Lightningflash_VLfog(progressW-cameraPosition, lightningBoltPosition.xyz) * (rL + m); vec3 foglighting = (Atmosphere + DirectLight + Lightning) * lightleakfix; color += (foglighting - foglighting * exp(-(rL+m)*dd*dL)) / ((rL+m)+0.00000001)*absorbance; absorbance *= clamp(exp(-(rL+m)*dd*dL),0.0,1.0); #ifdef RAYMARCH_CLOUDS_WITH_FOG ////////////////////////////////////////// ///// ----- cloud part ////////////////////////////////////////// // curvature = clamp(1.0 - length(progressW - cameraPosition)/(32*128),0.0,1.0); float otherlayer = max(progressW.y - (CloudLayer0_height+99.5), 0.0) > 0.0 ? 0.0 : 1.0; float DUAL_MIN_HEIGHT = otherlayer > 0.0 ? CloudLayer0_height : CloudLayer1_height; float DUAL_MAX_HEIGHT = DUAL_MIN_HEIGHT + 100.0; float DUAL_DENSITY = otherlayer > 0.0 ? CloudLayer0_density : CloudLayer1_density; if(clamp(progressW.y - DUAL_MAX_HEIGHT,0.0,1.0) < 1.0 && clamp(progressW.y - DUAL_MIN_HEIGHT,0.0,1.0) > 0.0){ float DUAL_MIN_HEIGHT_2 = otherlayer > 0.0 ? CloudLayer0_height : CloudLayer1_height; float DUAL_MAX_HEIGHT_2 = DUAL_MIN_HEIGHT + 100.0; float cumulus = GetCumulusDensity(-1, progressW, 1, CloudLayer0_height, CloudLayer1_height); float fadedDensity = DUAL_DENSITY * clamp(exp( (progressW.y - (DUAL_MAX_HEIGHT - 75)) / 9.0 ),0.0,1.0); float muE = cumulus*fadedDensity; float directLight = 0.0; for (int j=0; j < 3; j++){ vec3 shadowSamplePos = progressW + dV_Sun * (0.1 + j * (0.1 + dither.y*0.05)); float shadow = GetCumulusDensity(-1, shadowSamplePos, 0, DUAL_MIN_HEIGHT, DUAL_MAX_HEIGHT) * DUAL_DENSITY; directLight += shadow; } /// shadows cast from one layer to another /// large cumulus -> small cumulus #if defined CloudLayer1 && defined CloudLayer0 if(otherlayer > 0.0) directLight += LAYER1_DENSITY * 2.0 * GetCumulusDensity(1, progressW + dV_Sun/abs(dV_Sun.y) * max((LAYER1_minHEIGHT+70*dither.y) - progressW.y,0.0), 0, LAYER1_minHEIGHT, LAYER1_maxHEIGHT); #endif // // altostratus -> cumulus // #ifdef CloudLayer2 // vec3 HighAlt_shadowPos = rayProgress + dV_Sun/abs(dV_Sun.y) * max(LAYER2_HEIGHT - rayProgress.y,0.0); // float HighAlt_shadow = GetAltostratusDensity(HighAlt_shadowPos) * CloudLayer2_density; // directLight += HighAlt_shadow; // #endif float skyScatter = clamp(((DUAL_MAX_HEIGHT - 20 - progressW.y) / 275.0) * (0.5+DUAL_DENSITY),0.0,1.0); float distantfade = 1- exp( -10*pow(clamp(1.0 - length(progressW - cameraPosition)/(32*65),0.0,1.0),2)); vec3 cloudlighting = DoCloudLighting(muE, cumulus, SkyLightColor, skyScatter, directLight, directScattering*sh2, directMultiScattering*sh2, 1); color += max(cloudlighting - cloudlighting*exp(-muE*dd*dL),0.0) * absorbance; absorbance *= max(exp(-muE*dd*dL),0.0); } #endif if (min(dot(absorbance,vec3(0.335)),1.0) < 1e-5) break; } return vec4(color, min(dot(absorbance,vec3(0.335)),1.0)); }