uniform float noPuddleAreas; float densityAtPosFog(in vec3 pos){ pos /= 18.; pos.xz *= 0.5; vec3 p = floor(pos); vec3 f = fract(pos); f = (f*f) * (3.-2.*f); vec2 uv = p.xz + f.xz + p.y * vec2(0.0,193.0); vec2 coord = uv / 512.0; vec2 xy = texture2D(noisetex, coord).yx; return mix(xy.r,xy.g, f.y); } float cloudVol(in vec3 pos){ vec3 samplePos = pos*vec3(1.0,1./24.,1.0); vec3 samplePos2 = pos*vec3(1.0,1./48.,1.0); float fogYstart = SEA_LEVEL-6; float mult = exp( -max((pos.y - fogYstart) / 35.,0.0)); float fog_shape = 1.0 - densityAtPosFog(samplePos * 24.0 ); float fog_eroded = 1.0 - densityAtPosFog(samplePos2 * 200.0 ); // float CloudyFog = max( (fog_shape*2.0 - fog_eroded*0.5) - 1.2, max(fog_shape-0.8,0.0)) * mult; float heightlimit = exp2( -max((pos.y - fogYstart * (1.0+snowStorm)) / 25.,0.0)); float CloudyFog = max((fog_shape*1.2 - fog_eroded*0.2) - 0.75,0.0) * heightlimit ; float UniformFog = exp( max(pos.y - fogYstart,0.0) / -25) + 0.05; // UniformFog = 1.0; // float RainFog = max(fog_shape*10. - 7.,0.5) * exp2( -max((pos.y - SEA_LEVEL) / 25.,0.0)) * 72. * rainStrength * noPuddleAreas * RainFog_amount; float RainFog = (2 + max(fog_shape*10. - 7.,0.5)*2.0) * UniformFog * rainStrength * noPuddleAreas * RainFog_amount; #ifdef PER_BIOME_ENVIRONMENT // sandstorms and snowstorms if(sandStorm > 0 || snowStorm > 0) CloudyFog = mix(CloudyFog, max(densityAtPosFog((samplePos2 - vec3(frameTimeCounter,0,frameTimeCounter)*10) * 100.0 ) - 0.2,0.0) * heightlimit, sandStorm+snowStorm); #endif TimeOfDayFog(UniformFog, CloudyFog); return CloudyFog + UniformFog + RainFog; } float phaseRayleigh(float cosTheta) { const vec2 mul_add = vec2(0.1, 0.28) / acos(-1.0); return cosTheta * mul_add.x + mul_add.y; // optimized version from [Elek09], divided by 4 pi for energy conservation } float fogPhase(float lightPoint){ float linear = 1.0 - clamp(lightPoint*0.5+0.5,0.0,1.0); float linear2 = 1.0 - clamp(lightPoint,0.0,1.0); float exponential = exp2(pow(linear,0.3) * -15.0 ) * 1.5; exponential += sqrt(exp2(sqrt(linear) * -12.5)); return exponential; } // uniform bool inSpecialBiome; vec4 GetVolumetricFog( vec3 viewPosition, float dither, vec3 LightColor, vec3 AmbientColor ){ //project pixel position into projected shadowmap space vec3 wpos = mat3(gbufferModelViewInverse) * viewPosition + gbufferModelViewInverse[3].xyz; vec3 fragposition = mat3(shadowModelView) * wpos + shadowModelView[3].xyz; fragposition = diagonal3(shadowProjection) * fragposition + shadowProjection[3].xyz; // mat4 Custom_ViewMatrix = BuildShadowViewMatrix(LightDir); // mat4 Custom_ProjectionMatrix = BuildShadowProjectionMatrix(); // vec3 fragposition = mat3(Custom_ViewMatrix) * wpos + Custom_ViewMatrix[3].xyz; // fragposition = diagonal3(Custom_ProjectionMatrix) * fragposition + Custom_ProjectionMatrix[3].xyz; //project view origin into projected shadowmap space vec3 start = toShadowSpaceProjected(vec3(0.0)); //rayvector into projected shadow map space //we can use a projected vector because its orthographic projection //however we still have to send it to curved shadow map space every step vec3 dV = fragposition - start; vec3 dVWorld = (wpos-gbufferModelViewInverse[3].xyz); float maxLength = min(length(dVWorld), far)/length(dVWorld); dV *= maxLength; dVWorld *= maxLength; //apply dither vec3 progress = start.xyz; vec3 vL = vec3(0.); float SdotV = dot(sunVec,normalize(viewPosition))*lightCol.a; // float SdotV = dot(normalize(LightDir * mat3(gbufferModelViewInverse)), normalize(viewPosition))*lightCol.a; float dL = length(dVWorld); //Mie phase + somewhat simulates multiple scattering (Horizon zero down cloud approx) // float mie = phaseg(SdotV,0.7)*5.0 + 0.1; float mie = fogPhase(SdotV) * 5.0; float rayL = phaseRayleigh(SdotV); vec3 rC = vec3(fog_coefficientRayleighR*1e-6, fog_coefficientRayleighG*1e-5, fog_coefficientRayleighB*1e-5); vec3 mC = vec3(fog_coefficientMieR*1e-6, fog_coefficientMieG*1e-6, fog_coefficientMieB*1e-6); // Makes fog more white idk how to simulate it correctly vec3 LightSourceColor = LightColor; #ifdef ambientLight_only LightSourceColor = vec3(0.0); #endif vec3 skyCol0 = AmbientColor / 2.0; // recolor change sun and sky color to a color, but make sure luminance is preserved. #ifdef PER_BIOME_ENVIRONMENT BiomeFogColor(LightSourceColor); BiomeFogColor(skyCol0); #endif // float upGradient = 1.0 - (normalize(wpos).y*0.5 + 0.5); // skyCol0 *= exp(upGradient * -5.0)*1.5 + 0.5; float upGradient = normalize(wpos).y*0.9+0.1; skyCol0 = max(skyCol0 + skyCol0*upGradient,0.0); float mu = 1.0; float muS = mu; float absorbance = 1.0; float expFactor = 11.0; vec3 WsunVec = mat3(gbufferModelViewInverse) * sunVec * lightCol.a; vec3 progressW = gbufferModelViewInverse[3].xyz + cameraPosition; float lightleakfix = clamp(pow(eyeBrightnessSmooth.y/240.,2) ,0.0,1.0); for (int i=0;i 1e-5){ float muE = density * 0.5; float sunLight = 0.0; for (int j=0; j < 3; j++){ vec3 shadowSamplePos = progressW + dV_Sun * (0.1 + j * (0.1 + dither.y*0.05)); float shadow = cloudCoverage(shadowSamplePos, minCloudHeight, maxCloudHeight) * 0.5; sunLight += shadow; } sunLight += 2*cloudCoverage(progressW + dV_Sun/abs(dV_Sun.y) * max(minCloudHeight+20 - progressW.y,0.0), minCloudHeight, maxCloudHeight) * exp(-10*cloud); vec3 lighting = skyLightColor + (sunScattering*exp(-5 * sunLight) + sunMultiScattering*exp(-3 * sunLight)) * sh; color += max(lighting - lighting*exp(-muE*dd*dL),0.0) * absorbance; absorbance *= max(exp(-muE*dd*dL),0.0); if (absorbance < 1e-5) break; } return vec4(color, absorbance); }