#define VL_SAMPLES2 6 //[4 6 8 10 12 14 16 20 24 30 40 50] #define Ambient_Mult 1.0 //[0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.85 0.9 0.95 1.0 1.5 2.0 3.0 4.0 5.0 6.0 10.0] #define SEA_LEVEL 70 //[0 10 20 30 40 50 60 70 80 90 100 110 120 130 150 170 190] //The volumetric light uses an altitude-based fog density, this is where fog density is the highest, adjust this value according to your world. #define ATMOSPHERIC_DENSITY 1.0 //[0.0 0.5 1.0 1.5 2.0 2.5 3.0 4.0 5.0 7.5 10.0 12.5 15.0 20.] #define fog_mieg1 0.40 //[0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.85 0.9 0.95 1.0] #define fog_mieg2 0.10 //[0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.85 0.9 0.95 1.0] #define fog_coefficientRayleighR 5.8 //[0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0] #define fog_coefficientRayleighG 1.35 //[0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0] #define fog_coefficientRayleighB 3.31 //[0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0] #define fog_coefficientMieR 3.0 //[0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0] #define fog_coefficientMieG 3.0 //[0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0] #define fog_coefficientMieB 3.0 //[0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0] #define Underwater_Fog_Density 1.0 //[0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.85 0.9 0.95 1.0 1.5 2.0 3.0 4.0] float phaseRayleigh(float cosTheta) { const vec2 mul_add = vec2(0.1, 0.28) /acos(-1.0); return cosTheta * mul_add.x + mul_add.y; // optimized version from [Elek09], divided by 4 pi for energy conservation } float cloudVol2(in vec3 pos){ vec3 samplePos = pos*vec3(1.0,1./16.,1.0)+frameTimeCounter*vec3(0.5,0.,0.5)*5.; float coverage = mix(exp2(-(pos.y-SEA_LEVEL)*(pos.y-SEA_LEVEL)/10000.),1.0,rainStrength*0.5); float noise = densityAtPos(samplePos*12.); float unifCov = exp2(-max(pos.y-SEA_LEVEL,0.0)/50.); float cloud = pow(clamp(coverage-noise-0.76,0.0,1.0),2.)*1200./0.23/(coverage+0.01)*VFAmount*600+unifCov*60.*fogAmount; return cloud; } mat2x3 getVolumetricRays(float dither,vec3 fragpos) { //project pixel position into projected shadowmap space vec3 wpos = mat3(gbufferModelViewInverse) * fragpos + gbufferModelViewInverse[3].xyz; vec3 fragposition = mat3(shadowModelView) * wpos + shadowModelView[3].xyz; fragposition = diagonal3(shadowProjection) * fragposition + shadowProjection[3].xyz; //project view origin into projected shadowmap space vec3 start = toShadowSpaceProjected(vec3(0.)); //rayvector into projected shadow map space //we can use a projected vector because its orthographic projection //however we still have to send it to curved shadow map space every step vec3 dV = (fragposition-start); vec3 dVWorld = (wpos-gbufferModelViewInverse[3].xyz); float maxLength = min(length(dVWorld),256.0)/length(dVWorld); dV *= maxLength; dVWorld *= maxLength; //apply dither vec3 progress = start.xyz; vec3 progressW = gbufferModelViewInverse[3].xyz+cameraPosition; vec3 vL = vec3(0.); float SdotV = dot(sunVec,normalize(fragpos))*lightCol.a; float dL = length(dVWorld); //Mie phase + somewhat simulates multiple scattering (Horizon zero down cloud approx) float mie = max(phaseg(SdotV,fog_mieg1),1.0/13.0); float rayL = phaseRayleigh(SdotV); // wpos.y = clamp(wpos.y,0.0,1.0); vec3 ambientCoefs = dVWorld/dot(abs(dVWorld),vec3(1.)); vec3 ambientLight = ambientUp*clamp(ambientCoefs.y,0.,1.); ambientLight += ambientDown*clamp(-ambientCoefs.y,0.,1.); ambientLight += ambientRight*clamp(ambientCoefs.x,0.,1.); ambientLight += ambientLeft*clamp(-ambientCoefs.x,0.,1.); ambientLight += ambientB*clamp(ambientCoefs.z,0.,1.); ambientLight += ambientF*clamp(-ambientCoefs.z,0.,1.); vec3 skyCol0 = ambientLight*2.*eyeBrightnessSmooth.y/vec3(240.)*Ambient_Mult*2.0/PI; vec3 sunColor = lightCol.rgb; vec3 rC = vec3(fog_coefficientRayleighR*1e-6, fog_coefficientRayleighG*1e-5, fog_coefficientRayleighB*1e-5); vec3 mC = vec3(fog_coefficientMieR*1e-6, fog_coefficientMieG*1e-6, fog_coefficientMieB*1e-6); float mu = 1.0; float muS = 1.0*mu; vec3 absorbance = vec3(1.0); float expFactor = 11.0; for (int i=0;i