350 lines
12 KiB
Java
350 lines
12 KiB
Java
![]() |
|
||
|
package java.util;
|
||
|
import java.io.*;
|
||
|
|
||
|
public class LinkedHashMap<K,V>
|
||
|
extends HashMap<K,V>
|
||
|
implements Map<K,V>
|
||
|
{
|
||
|
|
||
|
private static final long serialVersionUID = 3801124242820219131L;
|
||
|
|
||
|
/**
|
||
|
* The head of the doubly linked list.
|
||
|
*/
|
||
|
private transient Entry<K,V> header;
|
||
|
|
||
|
/**
|
||
|
* The iteration ordering method for this linked hash map: <tt>true</tt>
|
||
|
* for access-order, <tt>false</tt> for insertion-order.
|
||
|
*
|
||
|
* @serial
|
||
|
*/
|
||
|
private final boolean accessOrder;
|
||
|
|
||
|
/**
|
||
|
* Constructs an empty insertion-ordered <tt>LinkedHashMap</tt> instance
|
||
|
* with the specified initial capacity and load factor.
|
||
|
*
|
||
|
* @param initialCapacity the initial capacity
|
||
|
* @param loadFactor the load factor
|
||
|
* @throws IllegalArgumentException if the initial capacity is negative
|
||
|
* or the load factor is nonpositive
|
||
|
*/
|
||
|
public LinkedHashMap(int initialCapacity, float loadFactor) {
|
||
|
super(initialCapacity, loadFactor);
|
||
|
accessOrder = false;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Constructs an empty insertion-ordered <tt>LinkedHashMap</tt> instance
|
||
|
* with the specified initial capacity and a default load factor (0.75).
|
||
|
*
|
||
|
* @param initialCapacity the initial capacity
|
||
|
* @throws IllegalArgumentException if the initial capacity is negative
|
||
|
*/
|
||
|
public LinkedHashMap(int initialCapacity) {
|
||
|
super(initialCapacity);
|
||
|
accessOrder = false;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Constructs an empty insertion-ordered <tt>LinkedHashMap</tt> instance
|
||
|
* with the default initial capacity (16) and load factor (0.75).
|
||
|
*/
|
||
|
public LinkedHashMap() {
|
||
|
super();
|
||
|
accessOrder = false;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Constructs an insertion-ordered <tt>LinkedHashMap</tt> instance with
|
||
|
* the same mappings as the specified map. The <tt>LinkedHashMap</tt>
|
||
|
* instance is created with a default load factor (0.75) and an initial
|
||
|
* capacity sufficient to hold the mappings in the specified map.
|
||
|
*
|
||
|
* @param m the map whose mappings are to be placed in this map
|
||
|
* @throws NullPointerException if the specified map is null
|
||
|
*/
|
||
|
public LinkedHashMap(Map<? extends K, ? extends V> m) {
|
||
|
super(m);
|
||
|
accessOrder = false;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Constructs an empty <tt>LinkedHashMap</tt> instance with the
|
||
|
* specified initial capacity, load factor and ordering mode.
|
||
|
*
|
||
|
* @param initialCapacity the initial capacity
|
||
|
* @param loadFactor the load factor
|
||
|
* @param accessOrder the ordering mode - <tt>true</tt> for
|
||
|
* access-order, <tt>false</tt> for insertion-order
|
||
|
* @throws IllegalArgumentException if the initial capacity is negative
|
||
|
* or the load factor is nonpositive
|
||
|
*/
|
||
|
public LinkedHashMap(int initialCapacity,
|
||
|
float loadFactor,
|
||
|
boolean accessOrder) {
|
||
|
super(initialCapacity, loadFactor);
|
||
|
this.accessOrder = accessOrder;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Called by superclass constructors and pseudoconstructors (clone,
|
||
|
* readObject) before any entries are inserted into the map. Initializes
|
||
|
* the chain.
|
||
|
*/
|
||
|
void init() {
|
||
|
header = new Entry<>(-1, null, null, null);
|
||
|
header.before = header.after = header;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Transfers all entries to new table array. This method is called
|
||
|
* by superclass resize. It is overridden for performance, as it is
|
||
|
* faster to iterate using our linked list.
|
||
|
*/
|
||
|
void transfer(HashMap.Entry[] newTable) {
|
||
|
int newCapacity = newTable.length;
|
||
|
for (Entry<K,V> e = header.after; e != header; e = e.after) {
|
||
|
int index = indexFor(e.hash, newCapacity);
|
||
|
e.next = newTable[index];
|
||
|
newTable[index] = e;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Returns <tt>true</tt> if this map maps one or more keys to the
|
||
|
* specified value.
|
||
|
*
|
||
|
* @param value value whose presence in this map is to be tested
|
||
|
* @return <tt>true</tt> if this map maps one or more keys to the
|
||
|
* specified value
|
||
|
*/
|
||
|
public boolean containsValue(Object value) {
|
||
|
// Overridden to take advantage of faster iterator
|
||
|
if (value==null) {
|
||
|
for (Entry e = header.after; e != header; e = e.after)
|
||
|
if (e.value==null)
|
||
|
return true;
|
||
|
} else {
|
||
|
for (Entry e = header.after; e != header; e = e.after)
|
||
|
if (value.equals(e.value))
|
||
|
return true;
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the value to which the specified key is mapped,
|
||
|
* or {@code null} if this map contains no mapping for the key.
|
||
|
*
|
||
|
* <p>More formally, if this map contains a mapping from a key
|
||
|
* {@code k} to a value {@code v} such that {@code (key==null ? k==null :
|
||
|
* key.equals(k))}, then this method returns {@code v}; otherwise
|
||
|
* it returns {@code null}. (There can be at most one such mapping.)
|
||
|
*
|
||
|
* <p>A return value of {@code null} does not <i>necessarily</i>
|
||
|
* indicate that the map contains no mapping for the key; it's also
|
||
|
* possible that the map explicitly maps the key to {@code null}.
|
||
|
* The {@link #containsKey containsKey} operation may be used to
|
||
|
* distinguish these two cases.
|
||
|
*/
|
||
|
public V get(Object key) {
|
||
|
Entry<K,V> e = (Entry<K,V>)getEntry(key);
|
||
|
if (e == null)
|
||
|
return null;
|
||
|
e.recordAccess(this);
|
||
|
return e.value;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Removes all of the mappings from this map.
|
||
|
* The map will be empty after this call returns.
|
||
|
*/
|
||
|
public void clear() {
|
||
|
super.clear();
|
||
|
header.before = header.after = header;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* LinkedHashMap entry.
|
||
|
*/
|
||
|
private static class Entry<K,V> extends HashMap.Entry<K,V> {
|
||
|
// These fields comprise the doubly linked list used for iteration.
|
||
|
Entry<K,V> before, after;
|
||
|
|
||
|
Entry(int hash, K key, V value, HashMap.Entry<K,V> next) {
|
||
|
super(hash, key, value, next);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Removes this entry from the linked list.
|
||
|
*/
|
||
|
private void remove() {
|
||
|
before.after = after;
|
||
|
after.before = before;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Inserts this entry before the specified existing entry in the list.
|
||
|
*/
|
||
|
private void addBefore(Entry<K,V> existingEntry) {
|
||
|
after = existingEntry;
|
||
|
before = existingEntry.before;
|
||
|
before.after = this;
|
||
|
after.before = this;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* This method is invoked by the superclass whenever the value
|
||
|
* of a pre-existing entry is read by Map.get or modified by Map.set.
|
||
|
* If the enclosing Map is access-ordered, it moves the entry
|
||
|
* to the end of the list; otherwise, it does nothing.
|
||
|
*/
|
||
|
void recordAccess(HashMap<K,V> m) {
|
||
|
LinkedHashMap<K,V> lm = (LinkedHashMap<K,V>)m;
|
||
|
if (lm.accessOrder) {
|
||
|
lm.modCount++;
|
||
|
remove();
|
||
|
addBefore(lm.header);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void recordRemoval(HashMap<K,V> m) {
|
||
|
remove();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
private abstract class LinkedHashIterator<T> implements Iterator<T> {
|
||
|
Entry<K,V> nextEntry = header.after;
|
||
|
Entry<K,V> lastReturned = null;
|
||
|
|
||
|
/**
|
||
|
* The modCount value that the iterator believes that the backing
|
||
|
* List should have. If this expectation is violated, the iterator
|
||
|
* has detected concurrent modification.
|
||
|
*/
|
||
|
int expectedModCount = modCount;
|
||
|
|
||
|
public boolean hasNext() {
|
||
|
return nextEntry != header;
|
||
|
}
|
||
|
|
||
|
public void remove() {
|
||
|
if (lastReturned == null)
|
||
|
throw new IllegalStateException();
|
||
|
if (modCount != expectedModCount)
|
||
|
throw new ConcurrentModificationException();
|
||
|
|
||
|
LinkedHashMap.this.remove(lastReturned.key);
|
||
|
lastReturned = null;
|
||
|
expectedModCount = modCount;
|
||
|
}
|
||
|
|
||
|
Entry<K,V> nextEntry() {
|
||
|
if (modCount != expectedModCount)
|
||
|
throw new ConcurrentModificationException();
|
||
|
if (nextEntry == header)
|
||
|
throw new NoSuchElementException();
|
||
|
|
||
|
Entry<K,V> e = lastReturned = nextEntry;
|
||
|
nextEntry = e.after;
|
||
|
return e;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
private class KeyIterator extends LinkedHashIterator<K> {
|
||
|
public K next() { return nextEntry().getKey(); }
|
||
|
}
|
||
|
|
||
|
private class ValueIterator extends LinkedHashIterator<V> {
|
||
|
public V next() { return nextEntry().value; }
|
||
|
}
|
||
|
|
||
|
private class EntryIterator extends LinkedHashIterator<Map.Entry<K,V>> {
|
||
|
public Map.Entry<K,V> next() { return nextEntry(); }
|
||
|
}
|
||
|
|
||
|
// These Overrides alter the behavior of superclass view iterator() methods
|
||
|
Iterator<K> newKeyIterator() { return new KeyIterator(); }
|
||
|
Iterator<V> newValueIterator() { return new ValueIterator(); }
|
||
|
Iterator<Map.Entry<K,V>> newEntryIterator() { return new EntryIterator(); }
|
||
|
|
||
|
/**
|
||
|
* This override alters behavior of superclass put method. It causes newly
|
||
|
* allocated entry to get inserted at the end of the linked list and
|
||
|
* removes the eldest entry if appropriate.
|
||
|
*/
|
||
|
void addEntry(int hash, K key, V value, int bucketIndex) {
|
||
|
createEntry(hash, key, value, bucketIndex);
|
||
|
|
||
|
// Remove eldest entry if instructed, else grow capacity if appropriate
|
||
|
Entry<K,V> eldest = header.after;
|
||
|
if (removeEldestEntry(eldest)) {
|
||
|
removeEntryForKey(eldest.key);
|
||
|
} else {
|
||
|
if (size >= threshold)
|
||
|
resize(2 * table.length);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* This override differs from addEntry in that it doesn't resize the
|
||
|
* table or remove the eldest entry.
|
||
|
*/
|
||
|
void createEntry(int hash, K key, V value, int bucketIndex) {
|
||
|
HashMap.Entry<K,V> old = table[bucketIndex];
|
||
|
Entry<K,V> e = new Entry<>(hash, key, value, old);
|
||
|
table[bucketIndex] = e;
|
||
|
e.addBefore(header);
|
||
|
size++;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns <tt>true</tt> if this map should remove its eldest entry.
|
||
|
* This method is invoked by <tt>put</tt> and <tt>putAll</tt> after
|
||
|
* inserting a new entry into the map. It provides the implementor
|
||
|
* with the opportunity to remove the eldest entry each time a new one
|
||
|
* is added. This is useful if the map represents a cache: it allows
|
||
|
* the map to reduce memory consumption by deleting stale entries.
|
||
|
*
|
||
|
* <p>Sample use: this override will allow the map to grow up to 100
|
||
|
* entries and then delete the eldest entry each time a new entry is
|
||
|
* added, maintaining a steady state of 100 entries.
|
||
|
* <pre>
|
||
|
* private static final int MAX_ENTRIES = 100;
|
||
|
*
|
||
|
* protected boolean removeEldestEntry(Map.Entry eldest) {
|
||
|
* return size() > MAX_ENTRIES;
|
||
|
* }
|
||
|
* </pre>
|
||
|
*
|
||
|
* <p>This method typically does not modify the map in any way,
|
||
|
* instead allowing the map to modify itself as directed by its
|
||
|
* return value. It <i>is</i> permitted for this method to modify
|
||
|
* the map directly, but if it does so, it <i>must</i> return
|
||
|
* <tt>false</tt> (indicating that the map should not attempt any
|
||
|
* further modification). The effects of returning <tt>true</tt>
|
||
|
* after modifying the map from within this method are unspecified.
|
||
|
*
|
||
|
* <p>This implementation merely returns <tt>false</tt> (so that this
|
||
|
* map acts like a normal map - the eldest element is never removed).
|
||
|
*
|
||
|
* @param eldest The least recently inserted entry in the map, or if
|
||
|
* this is an access-ordered map, the least recently accessed
|
||
|
* entry. This is the entry that will be removed it this
|
||
|
* method returns <tt>true</tt>. If the map was empty prior
|
||
|
* to the <tt>put</tt> or <tt>putAll</tt> invocation resulting
|
||
|
* in this invocation, this will be the entry that was just
|
||
|
* inserted; in other words, if the map contains a single
|
||
|
* entry, the eldest entry is also the newest.
|
||
|
* @return <tt>true</tt> if the eldest entry should be removed
|
||
|
* from the map; <tt>false</tt> if it should be retained.
|
||
|
*/
|
||
|
protected boolean removeEldestEntry(Map.Entry<K,V> eldest) {
|
||
|
return false;
|
||
|
}
|
||
|
}
|