diff --git a/notes/Java 并发.md b/notes/Java 并发.md index 89249b84..96d344a7 100644 --- a/notes/Java 并发.md +++ b/notes/Java 并发.md @@ -854,17 +854,17 @@ Java 内存模型定义了 8 个操作来完成主内存和工作内存的交互 Java 内存模型允许虚拟机将没有被 volatile 修饰的 64 位数据(long,double)的读写操作划分为两次 32 位的操作来进行,也就是说对这部分数据的操作可以不具备原子性。 -有一个错误认识就是,int 等原子性的变量在多线程操作中不会出现线程安全问题。之前的线程不安全示例代码中,cnt 变量属于 int 类型变量,1000 个线程对它进行自增操作之后,得到的值为 997 而不是 1000。 +有一个错误认识就是,int 等原子性的变量在多线程环境中不会出现线程安全问题。前面的线程不安全示例代码中,cnt 变量属于 int 类型变量,1000 个线程对它进行自增操作之后,得到的值为 997 而不是 1000。 为了方便讨论,将内存间的交互操作简化为 3 个:load、assign、store。 -下图演示了两个线程同时对 cnt 变量进行操作,load、assign、store 这三个操作不具备原子性,那么在 T1 修改 cnt 并且还没有将修改后的值写入主内存,T2 依然可以读入该变量的值。可以看出,这两个线程之后过后,虽然执行了两次自增运算,但是主内存中 cnt 的值最后为 1 而不是 2。因此对 int 类型读写操作满足原子性只是说明 assign 这个操作具备原子性。 +下图演示了两个线程同时对 cnt 变量进行操作,load、assign、store 这一系列操作不具备原子性,那么在 T1 修改 cnt 并且还没有将修改后的值写入主内存,T2 依然可以读入该变量的值。可以看出,这两个线程虽然执行了两次自增运算,但是主内存中 cnt 的值最后为 1 而不是 2。因此对 int 类型读写操作满足原子性只是说明 load、assign、store 这些单个操作具备原子性。 -

+

AtomicInteger 能保证多个线程修改的原子性。 -

+

使用 AtomicInteger 重写之前线程不安全的代码之后得到以下线程安全实现: @@ -943,7 +943,7 @@ public class AtomicSynchronizedExample { 可见性指当一个线程修改了共享变量的值,其它线程能够立即得知这个修改。Java 内存模型是通过在变量修改后将新值同步回主内存,在变量读取前从主内存刷新变量值来实现可见性的。 -volatile 可保证可见性。synchronized 也能够保证可见性,对一个变量执行 unlock 操作之前,必须把变量值同步回主内存。final 关键字也能保证可见性,:被 final 关键字修饰的字段在构造器中一旦初始化完成,并且没有发生 this 逃逸(其它线程可以通过 this 引用访问到初始化了一般的对象),那么其它线程就能看见 final 字段的值。 +volatile 可保证可见性。synchronized 也能够保证可见性,对一个变量执行 unlock 操作之前,必须把变量值同步回主内存。final 关键字也能保证可见性:被 final 关键字修饰的字段在构造器中一旦初始化完成,并且没有发生 this 逃逸(其它线程可以通过 this 引用访问到初始化了一般的对象),那么其它线程就能看见 final 字段的值。 ### 3. 有序性 diff --git a/pics/952afa9a-458b-44ce-bba9-463e60162945.png b/pics/952afa9a-458b-44ce-bba9-463e60162945.png new file mode 100644 index 00000000..db93c1ac Binary files /dev/null and b/pics/952afa9a-458b-44ce-bba9-463e60162945.png differ diff --git a/pics/ef8eab00-1d5e-4d99-a7c2-d6d68ea7fe92.png b/pics/ef8eab00-1d5e-4d99-a7c2-d6d68ea7fe92.png new file mode 100644 index 00000000..f6256867 Binary files /dev/null and b/pics/ef8eab00-1d5e-4d99-a7c2-d6d68ea7fe92.png differ