auto commit

This commit is contained in:
CyC2018
2019-03-08 21:41:45 +08:00
parent 1d945b3ea6
commit 6565c9a11e
55 changed files with 18457 additions and 17460 deletions

View File

@ -1,78 +1,89 @@
# 二分图
<!-- GFM-TOC -->
* [二分图](#二分图)
* [判断是否为二分图](#判断是否为二分图)
* [拓扑排序](#拓扑排序)
* [课程安排的合法性](#课程安排的合法性)
* [课程安排的顺序](#课程安排的顺序)
* [并查集](#并查集)
* [冗余连接](#冗余连接)
<!-- GFM-TOC -->
# 二分图
如果可以用两种颜色对图中的节点进行着色,并且保证相邻的节点颜色不同,那么这个图就是二分图。
## 判断是否为二分图
## 判断是否为二分图
[785. Is Graph Bipartite? (Medium)](https://leetcode.com/problems/is-graph-bipartite/description/)
[785. Is Graph Bipartite? (Medium)](https://leetcode.com/problems/is-graph-bipartite/description/)
```html
Input: [[1,3], [0,2], [1,3], [0,2]]
Output: true
Input: [[1,3], [0,2], [1,3], [0,2]]
Output: true
Explanation:
The graph looks like this:
The graph looks like this:
0----1
|    |
|    |
| |
| |
3----2
We can divide the vertices into two groups: {0, 2} and {1, 3}.
We can divide the vertices into two groups: {0, 2} and {1, 3}.
```
```html
Example 2:
Input: [[1,2,3], [0,2], [0,1,3], [0,2]]
Output: false
Example 2:
Input: [[1,2,3], [0,2], [0,1,3], [0,2]]
Output: false
Explanation:
The graph looks like this:
The graph looks like this:
0----1
| \  |
|  \ |
| \ |
| \ |
3----2
We cannot find a way to divide the set of nodes into two independent subsets.
We cannot find a way to divide the set of nodes into two independent subsets.
```
```java
public boolean isBipartite(int[][] graph) {
    int[] colors = new int[graph.length];
    Arrays.fill(colors, -1);
    for (int i = 0; i < graph.length; i++) {  // 处理图不是连通的情况
        if (colors[i] == -1 && !isBipartite(i, 0, colors, graph)) {
            return false;
        }
    }
    return true;
public boolean isBipartite(int[][] graph) {
int[] colors = new int[graph.length];
Arrays.fill(colors, -1);
for (int i = 0; i < graph.length; i++) { // 处理图不是连通的情况
if (colors[i] == -1 && !isBipartite(i, 0, colors, graph)) {
return false;
}
}
return true;
}
private boolean isBipartite(int curNode, int curColor, int[] colors, int[][] graph) {
    if (colors[curNode] != -1) {
        return colors[curNode] == curColor;
    }
    colors[curNode] = curColor;
    for (int nextNode : graph[curNode]) {
        if (!isBipartite(nextNode, 1 - curColor, colors, graph)) {
            return false;
        }
    }
    return true;
private boolean isBipartite(int curNode, int curColor, int[] colors, int[][] graph) {
if (colors[curNode] != -1) {
return colors[curNode] == curColor;
}
colors[curNode] = curColor;
for (int nextNode : graph[curNode]) {
if (!isBipartite(nextNode, 1 - curColor, colors, graph)) {
return false;
}
}
return true;
}
```
# 拓扑排序
# 拓扑排序
常用于在具有先序关系的任务规划中。
## 课程安排的合法性
## 课程安排的合法性
[207. Course Schedule (Medium)](https://leetcode.com/problems/course-schedule/description/)
[207. Course Schedule (Medium)](https://leetcode.com/problems/course-schedule/description/)
```html
2, [[1,0]]
return true
2, [[1,0]]
return true
```
```html
2, [[1,0],[0,1]]
return false
2, [[1,0],[0,1]]
return false
```
题目描述:一个课程可能会先修课程,判断给定的先修课程规定是否合法。
@ -80,167 +91,167 @@ return false
本题不需要使用拓扑排序,只需要检测有向图是否存在环即可。
```java
public boolean canFinish(int numCourses, int[][] prerequisites) {
    List<Integer>[] graphic = new List[numCourses];
    for (int i = 0; i < numCourses; i++) {
        graphic[i] = new ArrayList<>();
    }
    for (int[] pre : prerequisites) {
        graphic[pre[0]].add(pre[1]);
    }
    boolean[] globalMarked = new boolean[numCourses];
    boolean[] localMarked = new boolean[numCourses];
    for (int i = 0; i < numCourses; i++) {
        if (hasCycle(globalMarked, localMarked, graphic, i)) {
            return false;
        }
    }
    return true;
public boolean canFinish(int numCourses, int[][] prerequisites) {
List<Integer>[] graphic = new List[numCourses];
for (int i = 0; i < numCourses; i++) {
graphic[i] = new ArrayList<>();
}
for (int[] pre : prerequisites) {
graphic[pre[0]].add(pre[1]);
}
boolean[] globalMarked = new boolean[numCourses];
boolean[] localMarked = new boolean[numCourses];
for (int i = 0; i < numCourses; i++) {
if (hasCycle(globalMarked, localMarked, graphic, i)) {
return false;
}
}
return true;
}
private boolean hasCycle(boolean[] globalMarked, boolean[] localMarked,
                         List<Integer>[] graphic, int curNode) {
private boolean hasCycle(boolean[] globalMarked, boolean[] localMarked,
List<Integer>[] graphic, int curNode) {
    if (localMarked[curNode]) {
        return true;
    }
    if (globalMarked[curNode]) {
        return false;
    }
    globalMarked[curNode] = true;
    localMarked[curNode] = true;
    for (int nextNode : graphic[curNode]) {
        if (hasCycle(globalMarked, localMarked, graphic, nextNode)) {
            return true;
        }
    }
    localMarked[curNode] = false;
    return false;
if (localMarked[curNode]) {
return true;
}
if (globalMarked[curNode]) {
return false;
}
globalMarked[curNode] = true;
localMarked[curNode] = true;
for (int nextNode : graphic[curNode]) {
if (hasCycle(globalMarked, localMarked, graphic, nextNode)) {
return true;
}
}
localMarked[curNode] = false;
return false;
}
```
## 课程安排的顺序
## 课程安排的顺序
[210. Course Schedule II (Medium)](https://leetcode.com/problems/course-schedule-ii/description/)
[210. Course Schedule II (Medium)](https://leetcode.com/problems/course-schedule-ii/description/)
```html
4, [[1,0],[2,0],[3,1],[3,2]]
There are a total of 4 courses to take. To take course 3 you should have finished both courses 1 and 2. Both courses 1 and 2 should be taken after you finished course 0. So one correct course order is [0,1,2,3]. Another correct ordering is[0,2,1,3].
4, [[1,0],[2,0],[3,1],[3,2]]
There are a total of 4 courses to take. To take course 3 you should have finished both courses 1 and 2. Both courses 1 and 2 should be taken after you finished course 0. So one correct course order is [0,1,2,3]. Another correct ordering is[0,2,1,3].
```
使用 DFS 来实现拓扑排序,使用一个栈存储后序遍历结果,这个栈的逆序结果就是拓扑排序结果。
使用 DFS 来实现拓扑排序,使用一个栈存储后序遍历结果,这个栈的逆序结果就是拓扑排序结果。
证明对于任何先序关系v->w后序遍历结果可以保证 w 先进入栈中,因此栈的逆序结果中 v 会在 w 之前。
证明对于任何先序关系v->w后序遍历结果可以保证 w 先进入栈中,因此栈的逆序结果中 v 会在 w 之前。
```java
public int[] findOrder(int numCourses, int[][] prerequisites) {
    List<Integer>[] graphic = new List[numCourses];
    for (int i = 0; i < numCourses; i++) {
        graphic[i] = new ArrayList<>();
    }
    for (int[] pre : prerequisites) {
        graphic[pre[0]].add(pre[1]);
    }
    Stack<Integer> postOrder = new Stack<>();
    boolean[] globalMarked = new boolean[numCourses];
    boolean[] localMarked = new boolean[numCourses];
    for (int i = 0; i < numCourses; i++) {
        if (hasCycle(globalMarked, localMarked, graphic, i, postOrder)) {
            return new int[0];
        }
    }
    int[] orders = new int[numCourses];
    for (int i = numCourses - 1; i >= 0; i--) {
        orders[i] = postOrder.pop();
    }
    return orders;
public int[] findOrder(int numCourses, int[][] prerequisites) {
List<Integer>[] graphic = new List[numCourses];
for (int i = 0; i < numCourses; i++) {
graphic[i] = new ArrayList<>();
}
for (int[] pre : prerequisites) {
graphic[pre[0]].add(pre[1]);
}
Stack<Integer> postOrder = new Stack<>();
boolean[] globalMarked = new boolean[numCourses];
boolean[] localMarked = new boolean[numCourses];
for (int i = 0; i < numCourses; i++) {
if (hasCycle(globalMarked, localMarked, graphic, i, postOrder)) {
return new int[0];
}
}
int[] orders = new int[numCourses];
for (int i = numCourses - 1; i >= 0; i--) {
orders[i] = postOrder.pop();
}
return orders;
}
private boolean hasCycle(boolean[] globalMarked, boolean[] localMarked, List<Integer>[] graphic,
                         int curNode, Stack<Integer> postOrder) {
private boolean hasCycle(boolean[] globalMarked, boolean[] localMarked, List<Integer>[] graphic,
int curNode, Stack<Integer> postOrder) {
    if (localMarked[curNode]) {
        return true;
    }
    if (globalMarked[curNode]) {
        return false;
    }
    globalMarked[curNode] = true;
    localMarked[curNode] = true;
    for (int nextNode : graphic[curNode]) {
        if (hasCycle(globalMarked, localMarked, graphic, nextNode, postOrder)) {
            return true;
        }
    }
    localMarked[curNode] = false;
    postOrder.push(curNode);
    return false;
if (localMarked[curNode]) {
return true;
}
if (globalMarked[curNode]) {
return false;
}
globalMarked[curNode] = true;
localMarked[curNode] = true;
for (int nextNode : graphic[curNode]) {
if (hasCycle(globalMarked, localMarked, graphic, nextNode, postOrder)) {
return true;
}
}
localMarked[curNode] = false;
postOrder.push(curNode);
return false;
}
```
# 并查集
# 并查集
并查集可以动态地连通两个点,并且可以非常快速地判断两个点是否连通。
## 冗余连接
## 冗余连接
[684. Redundant Connection (Medium)](https://leetcode.com/problems/redundant-connection/description/)
[684. Redundant Connection (Medium)](https://leetcode.com/problems/redundant-connection/description/)
```html
Input: [[1,2], [1,3], [2,3]]
Output: [2,3]
Explanation: The given undirected graph will be like this:
  1
 / \
2 - 3
Input: [[1,2], [1,3], [2,3]]
Output: [2,3]
Explanation: The given undirected graph will be like this:
1
/ \
2 - 3
```
题目描述:有一系列的边连成的图,找出一条边,移除它之后该图能够成为一棵树。
```java
public int[] findRedundantConnection(int[][] edges) {
    int N = edges.length;
    UF uf = new UF(N);
    for (int[] e : edges) {
        int u = e[0], v = e[1];
        if (uf.connect(u, v)) {
            return e;
        }
        uf.union(u, v);
    }
    return new int[]{-1, -1};
public int[] findRedundantConnection(int[][] edges) {
int N = edges.length;
UF uf = new UF(N);
for (int[] e : edges) {
int u = e[0], v = e[1];
if (uf.connect(u, v)) {
return e;
}
uf.union(u, v);
}
return new int[]{-1, -1};
}
private class UF {
private class UF {
    private int[] id;
private int[] id;
    UF(int N) {
        id = new int[N + 1];
        for (int i = 0; i < id.length; i++) {
            id[i] = i;
        }
    }
UF(int N) {
id = new int[N + 1];
for (int i = 0; i < id.length; i++) {
id[i] = i;
}
}
    void union(int u, int v) {
        int uID = find(u);
        int vID = find(v);
        if (uID == vID) {
            return;
        }
        for (int i = 0; i < id.length; i++) {
            if (id[i] == uID) {
                id[i] = vID;
            }
        }
    }
void union(int u, int v) {
int uID = find(u);
int vID = find(v);
if (uID == vID) {
return;
}
for (int i = 0; i < id.length; i++) {
if (id[i] == uID) {
id[i] = vID;
}
}
}
    int find(int p) {
        return id[p];
    }
int find(int p) {
return id[p];
}
    boolean connect(int u, int v) {
        return find(u) == find(v);
    }
boolean connect(int u, int v) {
return find(u) == find(v);
}
}
```