auto commit

This commit is contained in:
CyC2018
2020-11-17 00:32:18 +08:00
parent f5ad47b470
commit 7e61fc1360
380 changed files with 2371 additions and 46715 deletions

View File

@ -1,64 +1,66 @@
# 算法 - 算法分析
<!-- GFM-TOC -->
* [数学模型](#数学模型)
* [1. 近似](#1-近似)
* [2. 增长数量级](#2-增长数量级)
* [3. 内循环](#3-内循环)
* [4. 成本模型](#4-成本模型)
* [注意事项](#注意事项)
* [1. 大常数](#1-大常数)
* [2. 缓存](#2-缓存)
* [3. 对最坏情况下的性能的保证](#3-对最坏情况下的性能的保证)
* [4. 随机化算法](#4-随机化算法)
* [5. 均摊分析](#5-均摊分析)
* [ThreeSum](#threesum)
* [1. ThreeSumSlow](#1-threesumslow)
* [2. ThreeSumBinarySearch](#2-threesumbinarysearch)
* [3. ThreeSumTwoPointer](#3-threesumtwopointer)
* [倍率实验](#倍率实验)
* [算法 - 算法分析](#算法---算法分析)
* [数学模型](#数学模型)
* [1. 近似](#1-近似)
* [2. 增长数量级](#2-增长数量级)
* [3. 内循环](#3-内循环)
* [4. 成本模型](#4-成本模型)
* [注意事项](#注意事项)
* [1. 大常数](#1-大常数)
* [2. 缓存](#2-缓存)
* [3. 对最坏情况下的性能的保证](#3-对最坏情况下的性能的保证)
* [4. 随机化算法](#4-随机化算法)
* [5. 均摊分析](#5-均摊分析)
* [ThreeSum](#threesum)
* [1. ThreeSumSlow](#1-threesumslow)
* [2. ThreeSumBinarySearch](#2-threesumbinarysearch)
* [3. ThreeSumTwoPointer](#3-threesumtwopointer)
* [倍率实验](#倍率实验)
<!-- GFM-TOC -->
# 数学模型
## 数学模型
## 1. 近似
### 1. 近似
N<sup>3</sup>/6-N<sup>2</sup>/2+N/3 \~ N<sup>3</sup>/6使用 \~f(N) 来表示所有随着 N 的增大除以 f(N) 的结果趋近于 1 的函数
## 2. 增长数量级
### 2. 增长数量级
N<sup>3</sup>/6-N<sup>2</sup>/2+N/3 的增长数量级为 O(N<sup>3</sup>)增长数量级将算法与它的具体实现隔离开来一个算法的增长数量级为 O(N<sup>3</sup>) 与它是否用 Java 实现是否运行于特定计算机上无关
## 3. 内循环
### 3. 内循环
执行最频繁的指令决定了程序执行的总时间把这些指令称为程序的内循环
## 4. 成本模型
### 4. 成本模型
使用成本模型来评估算法例如数组的访问次数就是一种成本模型
# 注意事项
## 注意事项
## 1. 大常数
### 1. 大常数
在求近似时如果低级项的常数系数很大那么近似的结果是错误的
## 2. 缓存
### 2. 缓存
计算机系统会使用缓存技术来组织内存访问数组相邻的元素会比访问不相邻的元素快很多
## 3. 对最坏情况下的性能的保证
### 3. 对最坏情况下的性能的保证
在核反应堆心脏起搏器或者刹车控制器中的软件最坏情况下的性能是十分重要的
## 4. 随机化算法
### 4. 随机化算法
通过打乱输入去除算法对输入的依赖
## 5. 均摊分析
### 5. 均摊分析
将所有操作的总成本除于操作总数来将成本均摊例如对一个空栈进行 N 次连续的 push() 调用需要访问数组的次数为 N+4+8+16+...+2N=5N-4N 是向数组写入元素的次数其余都是调整数组大小时进行复制需要的访问数组次数均摊后访问数组的平均次数为常数
# ThreeSum
## ThreeSum
ThreeSum 用于统计一个数组中和为 0 的三元组数量
@ -68,7 +70,7 @@ public interface ThreeSum {
}
```
## 1. ThreeSumSlow
### 1. ThreeSumSlow
该算法的内循环为 `if (nums[i] + nums[j] + nums[k] == 0)` 语句总共执行的次数为 N(N-1)(N-2) = N<sup>3</sup>/6-N<sup>2</sup>/2+N/3因此它的近似执行次数为 \~N<sup>3</sup>/6增长数量级为 O(N<sup>3</sup>)
@ -92,7 +94,7 @@ public class ThreeSumSlow implements ThreeSum {
}
```
## 2. ThreeSumBinarySearch
### 2. ThreeSumBinarySearch
将数组进行排序对两个元素求和并用二分查找方法查找是否存在该和的相反数如果存在就说明存在和为 0 的三元组
@ -143,7 +145,7 @@ public class BinarySearch {
}
```
## 3. ThreeSumTwoPointer
### 3. ThreeSumTwoPointer
更有效的方法是先将数组排序然后使用双指针进行查找时间复杂度为 O(N<sup>2</sup>)
@ -177,7 +179,7 @@ public class ThreeSumTwoPointer implements ThreeSum {
}
```
# 倍率实验
## 倍率实验
如果 T(N) \~ aN<sup>b</sup>logN那么 T(2N)/T(N) \~ 2<sup>b</sup>
@ -234,10 +236,3 @@ public class StopWatch {
}
}
```
<div align="center"><img width="320px" src="https://cs-notes-1256109796.cos.ap-guangzhou.myqcloud.com/githubio/公众号二维码-2.png"></img></div>