auto commit
This commit is contained in:
67
docs/notes/10.1 斐波那契数列.md
Normal file
67
docs/notes/10.1 斐波那契数列.md
Normal file
@ -0,0 +1,67 @@
|
||||
# 10.1 斐波那契数列
|
||||
|
||||
[NowCoder](https://www.nowcoder.com/practice/c6c7742f5ba7442aada113136ddea0c3?tpId=13&tqId=11160&tPage=1&rp=1&ru=/ta/coding-interviews&qru=/ta/coding-interviews/question-ranking&from=cyc_github)
|
||||
|
||||
## 题目描述
|
||||
|
||||
求斐波那契数列的第 n 项,n <= 39。
|
||||
|
||||
<!--<div align="center"><img src="https://latex.codecogs.com/gif.latex?f(n)=\left\{\begin{array}{rcl}0&&{n=0}\\1&&{n=1}\\f(n-1)+f(n-2)&&{n>1}\end{array}\right." class="mathjax-pic"/></div> <br> -->
|
||||
|
||||
<img src="https://cs-notes-1256109796.cos.ap-guangzhou.myqcloud.com/45be9587-6069-4ab7-b9ac-840db1a53744.jpg" width="300px">
|
||||
|
||||
## 解题思路
|
||||
|
||||
如果使用递归求解,会重复计算一些子问题。例如,计算 f(4) 需要计算 f(3) 和 f(2),计算 f(3) 需要计算 f(2) 和 f(1),可以看到 f(2) 被重复计算了。
|
||||
|
||||
<img src="https://cs-notes-1256109796.cos.ap-guangzhou.myqcloud.com/c13e2a3d-b01c-4a08-a69b-db2c4e821e09.png" width="350px"/>
|
||||
|
||||
递归是将一个问题划分成多个子问题求解,动态规划也是如此,但是动态规划会把子问题的解缓存起来,从而避免重复求解子问题。
|
||||
|
||||
```java
|
||||
public int Fibonacci(int n) {
|
||||
if (n <= 1)
|
||||
return n;
|
||||
int[] fib = new int[n + 1];
|
||||
fib[1] = 1;
|
||||
for (int i = 2; i <= n; i++)
|
||||
fib[i] = fib[i - 1] + fib[i - 2];
|
||||
return fib[n];
|
||||
}
|
||||
```
|
||||
|
||||
考虑到第 i 项只与第 i-1 和第 i-2 项有关,因此只需要存储前两项的值就能求解第 i 项,从而将空间复杂度由 O(N) 降低为 O(1)。
|
||||
|
||||
```java
|
||||
public int Fibonacci(int n) {
|
||||
if (n <= 1)
|
||||
return n;
|
||||
int pre2 = 0, pre1 = 1;
|
||||
int fib = 0;
|
||||
for (int i = 2; i <= n; i++) {
|
||||
fib = pre2 + pre1;
|
||||
pre2 = pre1;
|
||||
pre1 = fib;
|
||||
}
|
||||
return fib;
|
||||
}
|
||||
```
|
||||
|
||||
由于待求解的 n 小于 40,因此可以将前 40 项的结果先进行计算,之后就能以 O(1) 时间复杂度得到第 n 项的值。
|
||||
|
||||
```java
|
||||
public class Solution {
|
||||
|
||||
private int[] fib = new int[40];
|
||||
|
||||
public Solution() {
|
||||
fib[1] = 1;
|
||||
for (int i = 2; i < fib.length; i++)
|
||||
fib[i] = fib[i - 1] + fib[i - 2];
|
||||
}
|
||||
|
||||
public int Fibonacci(int n) {
|
||||
return fib[n];
|
||||
}
|
||||
}
|
||||
```
|
Reference in New Issue
Block a user