auto commit
This commit is contained in:
58
docs/notes/10.4 变态跳台阶.md
Normal file
58
docs/notes/10.4 变态跳台阶.md
Normal file
@ -0,0 +1,58 @@
|
||||
# 10.4 变态跳台阶
|
||||
|
||||
[NowCoder](https://www.nowcoder.com/practice/22243d016f6b47f2a6928b4313c85387?tpId=13&tqId=11162&tPage=1&rp=1&ru=/ta/coding-interviews&qru=/ta/coding-interviews/question-ranking&from=cyc_github)
|
||||
|
||||
## 题目描述
|
||||
|
||||
一只青蛙一次可以跳上 1 级台阶,也可以跳上 2 级... 它也可以跳上 n 级。求该青蛙跳上一个 n 级的台阶总共有多少种跳法。
|
||||
|
||||
<img src="https://cs-notes-1256109796.cos.ap-guangzhou.myqcloud.com/cd411a94-3786-4c94-9e08-f28320e010d5.png" width="380px">
|
||||
|
||||
## 解题思路
|
||||
|
||||
### 动态规划
|
||||
|
||||
```java
|
||||
public int JumpFloorII(int target) {
|
||||
int[] dp = new int[target];
|
||||
Arrays.fill(dp, 1);
|
||||
for (int i = 1; i < target; i++)
|
||||
for (int j = 0; j < i; j++)
|
||||
dp[i] += dp[j];
|
||||
return dp[target - 1];
|
||||
}
|
||||
```
|
||||
|
||||
### 数学推导
|
||||
|
||||
跳上 n-1 级台阶,可以从 n-2 级跳 1 级上去,也可以从 n-3 级跳 2 级上去...,那么
|
||||
|
||||
```
|
||||
f(n-1) = f(n-2) + f(n-3) + ... + f(0)
|
||||
```
|
||||
|
||||
同样,跳上 n 级台阶,可以从 n-1 级跳 1 级上去,也可以从 n-2 级跳 2 级上去... ,那么
|
||||
|
||||
```
|
||||
f(n) = f(n-1) + f(n-2) + ... + f(0)
|
||||
```
|
||||
|
||||
综上可得
|
||||
|
||||
```
|
||||
f(n) - f(n-1) = f(n-1)
|
||||
```
|
||||
|
||||
即
|
||||
|
||||
```
|
||||
f(n) = 2*f(n-1)
|
||||
```
|
||||
|
||||
所以 f(n) 是一个等比数列
|
||||
|
||||
```source-java
|
||||
public int JumpFloorII(int target) {
|
||||
return (int) Math.pow(2, target - 1);
|
||||
}
|
||||
```
|
Reference in New Issue
Block a user