From cc269f8b5e45414bd2eb665db7b5306a5e6947af Mon Sep 17 00:00:00 2001
From: CyC2018 <1029579233@qq.com>
Date: Sat, 9 Jun 2018 13:53:37 +0800
Subject: [PATCH] auto commit
---
notes/Leetcode 题解.md | 511 +++++++++++++++++++++++------------------
1 file changed, 291 insertions(+), 220 deletions(-)
diff --git a/notes/Leetcode 题解.md b/notes/Leetcode 题解.md
index dca12b0d..dedc443c 100644
--- a/notes/Leetcode 题解.md
+++ b/notes/Leetcode 题解.md
@@ -1042,7 +1042,7 @@ private void swap(int[] nums, int i, int j) {
- 4 -> {}
- 3 -> {}
-可以看到,每一轮遍历的节点都与根节点距离相同。设 di 表示第 i 个节点与根节点的距离,推导出一个结论:对于先遍历的节点 i 与后遍历的节点 j,有 di<=dj。利用这个结论,可以求解最短路径等 **最优解** 问题:第一次遍历到目的节点,其所经过的路径为最短路径。应该注意的是,使用 BFS 只能求解无权图的最短路径。
+可以看到,每一层遍历的节点都与根节点距离相同。设 di 表示第 i 个节点与根节点的距离,推导出一个结论:对于先遍历的节点 i 与后遍历的节点 j,有 di<=dj。利用这个结论,可以求解最短路径等 **最优解** 问题:第一次遍历到目的节点,其所经过的路径为最短路径。应该注意的是,使用 BFS 只能求解无权图的最短路径。
在程序实现 BFS 时需要考虑以下问题:
@@ -1058,14 +1058,14 @@ private void swap(int[] nums, int i, int j) {
[1,0,1,1]]
```
-题目描述:1 表示可以经过某个位置,求解从 (0, 0) 位置到 (tr, tc) 位置的最短路径长度。
+1 表示可以经过某个位置,求解从 (0, 0) 位置到 (tr, tc) 位置的最短路径长度。
```java
public int minPathLength(int[][] grids, int tr, int tc) {
final int[][] direction = {{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
final int m = grids.length, n = grids[0].length;
Queue> queue = new LinkedList<>();
- queue.add(new Pair(0, 0));
+ queue.add(new Pair<>(0, 0));
int pathLength = 0;
while (!queue.isEmpty()) {
int size = queue.size();
@@ -1073,12 +1073,17 @@ public int minPathLength(int[][] grids, int tr, int tc) {
while (size-- > 0) {
Pair cur = queue.poll();
for (int[] d : direction) {
- Pair next = new Pair(cur.getKey() + d[0], cur.getValue() + d[1]);
- if (next.getKey() < 0 || next.getValue() >= m || next.getKey() < 0 || next.getValue() >= n)
+ int nr = cur.getKey() + d[0], nc = cur.getValue() + d[1];
+ Pair next = new Pair<>(nr, nc);
+ if (next.getKey() < 0 || next.getValue() >= m
+ || next.getKey() < 0 || next.getValue() >= n) {
+
continue;
+ }
grids[next.getKey()][next.getValue()] = 0; // 标记
- if (next.getKey() == tr && next.getValue() == tc)
+ if (next.getKey() == tr && next.getValue() == tc) {
return pathLength;
+ }
queue.add(next);
}
}
@@ -1095,7 +1100,7 @@ public int minPathLength(int[][] grids, int tr, int tc) {
For example, given n = 12, return 3 because 12 = 4 + 4 + 4; given n = 13, return 2 because 13 = 4 + 9.
```
-可以将每个整数看成图中的一个节点,如果两个整数只差为一个平方数,那么这两个整数所在的节点就有一条边。
+可以将每个整数看成图中的一个节点,如果两个整数之差为一个平方数,那么这两个整数所在的节点就有一条边。
要求解最小的平方数数量,就是求解从节点 n 到节点 0 的最短路径。
@@ -1108,20 +1113,23 @@ public int numSquares(int n) {
boolean[] marked = new boolean[n + 1];
queue.add(n);
marked[n] = true;
- int num = 0;
+ int level = 0;
while (!queue.isEmpty()) {
int size = queue.size();
- num++;
+ level++;
while (size-- > 0) {
int cur = queue.poll();
for (int s : squares) {
int next = cur - s;
- if (next < 0)
+ if (next < 0) {
break;
- if (next == 0)
- return num;
- if (marked[next])
+ }
+ if (next == 0) {
+ return level;
+ }
+ if (marked[next]) {
continue;
+ }
marked[next] = true;
queue.add(cur - s);
}
@@ -1130,6 +1138,10 @@ public int numSquares(int n) {
return n;
}
+/**
+ * 生成小于 n 的平方数序列
+ * @return 1,4,9,...
+ */
private List generateSquares(int n) {
List squares = new ArrayList<>();
int square = 1;
@@ -1170,7 +1182,7 @@ Output: 0
Explanation: The endWord "cog" is not in wordList, therefore no possible transformation.
```
-题目描述:要找出一条从 beginWord 到 endWord 的最短路径,每次移动规定为改变一个字符,并且改变之后的字符串必须在 wordList 中。
+找出一条从 beginWord 到 endWord 的最短路径,每次移动规定为改变一个字符,并且改变之后的字符串必须在 wordList 中。
```java
public int ladderLength(String beginWord, String endWord, List wordList) {
@@ -1178,10 +1190,12 @@ public int ladderLength(String beginWord, String endWord, List wordList)
int N = wordList.size();
int start = N - 1;
int end = 0;
- while (end < N && !wordList.get(end).equals(endWord))
+ while (end < N && !wordList.get(end).equals(endWord)) {
end++;
- if (end == N)
+ }
+ if (end == N) {
return 0;
+ }
List[] graphic = buildGraphic(wordList);
return getShortestPath(graphic, start, end);
}
@@ -1192,8 +1206,9 @@ private List[] buildGraphic(List wordList) {
for (int i = 0; i < N; i++) {
graphic[i] = new ArrayList<>();
for (int j = 0; j < N; j++) {
- if (isConnect(wordList.get(i), wordList.get(j)))
+ if (isConnect(wordList.get(i), wordList.get(j))) {
graphic[i].add(j);
+ }
}
}
return graphic;
@@ -1202,8 +1217,9 @@ private List[] buildGraphic(List wordList) {
private boolean isConnect(String s1, String s2) {
int diffCnt = 0;
for (int i = 0; i < s1.length() && diffCnt <= 1; i++) {
- if (s1.charAt(i) != s2.charAt(i))
+ if (s1.charAt(i) != s2.charAt(i)) {
diffCnt++;
+ }
}
return diffCnt == 1;
}
@@ -1220,10 +1236,12 @@ private int getShortestPath(List[] graphic, int start, int end) {
while (size-- > 0) {
int cur = queue.poll();
for (int next : graphic[cur]) {
- if (next == end)
+ if (next == end) {
return path;
- if (marked[next])
+ }
+ if (marked[next]) {
continue;
+ }
marked[next] = true;
queue.add(next);
}
@@ -1268,29 +1286,29 @@ private int m, n;
private int[][] direction = {{0, 1}, {0, -1}, {1, 0}, {-1, 0}};
public int maxAreaOfIsland(int[][] grid) {
- if (grid == null || grid.length == 0)
+ if (grid == null || grid.length == 0) {
return 0;
-
+ }
m = grid.length;
n = grid[0].length;
-
int maxArea = 0;
- for (int i = 0; i < m; i++)
- for (int j = 0; j < n; j++)
+ for (int i = 0; i < m; i++) {
+ for (int j = 0; j < n; j++) {
maxArea = Math.max(maxArea, dfs(grid, i, j));
-
+ }
+ }
return maxArea;
}
private int dfs(int[][] grid, int r, int c) {
- if (r < 0 || r >= m || c < 0 || c >= n || grid[r][c] == 0)
+ if (r < 0 || r >= m || c < 0 || c >= n || grid[r][c] == 0) {
return 0;
-
+ }
grid[r][c] = 0;
int area = 1;
- for (int[] d : direction)
+ for (int[] d : direction) {
area += dfs(grid, r + d[0], c + d[1]);
-
+ }
return area;
}
```
@@ -1316,29 +1334,31 @@ private int m, n;
private int[][] direction = {{0, 1}, {0, -1}, {1, 0}, {-1, 0}};
public int numIslands(char[][] grid) {
- if (grid == null || grid.length == 0)
+ if (grid == null || grid.length == 0) {
return 0;
-
+ }
m = grid.length;
n = grid[0].length;
int islandsNum = 0;
- for (int i = 0; i < m; i++)
- for (int j = 0; j < n; j++)
+ for (int i = 0; i < m; i++) {
+ for (int j = 0; j < n; j++) {
if (grid[i][j] != '0') {
dfs(grid, i, j);
islandsNum++;
}
-
+ }
+ }
return islandsNum;
}
private void dfs(char[][] grid, int i, int j) {
- if (i < 0 || i >= m || j < 0 || j >= n || grid[i][j] == '0')
+ if (i < 0 || i >= m || j < 0 || j >= n || grid[i][j] == '0') {
return;
-
+ }
grid[i][j] = '0';
- for (int[] d : direction)
+ for (int[] d : direction) {
dfs(grid, i + d[0], j + d[1]);
+ }
}
```
@@ -1365,20 +1385,22 @@ public int findCircleNum(int[][] M) {
n = M.length;
int circleNum = 0;
boolean[] hasVisited = new boolean[n];
- for (int i = 0; i < n; i++)
+ for (int i = 0; i < n; i++) {
if (!hasVisited[i]) {
dfs(M, i, hasVisited);
circleNum++;
}
-
+ }
return circleNum;
}
private void dfs(int[][] M, int i, boolean[] hasVisited) {
hasVisited[i] = true;
- for (int k = 0; k < n; k++)
- if (M[i][k] == 1 && !hasVisited[k])
+ for (int k = 0; k < n; k++) {
+ if (M[i][k] == 1 && !hasVisited[k]) {
dfs(M, k, hasVisited);
+ }
+ }
}
```
@@ -1400,7 +1422,7 @@ X X X X
X O X X
```
-题目描述:使得被 'X' 包围的 'O' 转换为 'X'。
+使被 'X' 包围的 'O' 转换为 'X'。
先填充最外侧,剩下的就是里侧了。
@@ -1409,8 +1431,9 @@ private int[][] direction = {{0, 1}, {0, -1}, {1, 0}, {-1, 0}};
private int m, n;
public void solve(char[][] board) {
- if (board == null || board.length == 0)
+ if (board == null || board.length == 0) {
return;
+ }
m = board.length;
n = board[0].length;
@@ -1424,22 +1447,25 @@ public void solve(char[][] board) {
dfs(board, m - 1, i);
}
- for (int i = 0; i < m; i++)
+ for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
- if (board[i][j] == 'T')
+ if (board[i][j] == 'T') {
board[i][j] = 'O';
- else if (board[i][j] == 'O')
+ } else if (board[i][j] == 'O') {
board[i][j] = 'X';
+ }
}
+ }
}
private void dfs(char[][] board, int r, int c) {
- if (r < 0 || r >= m || c < 0 || c >= n || board[r][c] != 'O')
+ if (r < 0 || r >= m || c < 0 || c >= n || board[r][c] != 'O') {
return;
-
+ }
board[r][c] = 'T';
- for (int[] d : direction)
+ for (int[] d : direction) {
dfs(board, r + d[0], c + d[1]);
+ }
}
```
@@ -1462,17 +1488,19 @@ Return:
[[0, 4], [1, 3], [1, 4], [2, 2], [3, 0], [3, 1], [4, 0]] (positions with parentheses in above matrix).
```
-题目描述:左边和上边是太平洋,右边和下边是大西洋,内部的数字代表海拔,海拔高的地方的水能够流到低的地方,求解水能够流到太平洋和大西洋的所有位置。
+左边和上边是太平洋,右边和下边是大西洋,内部的数字代表海拔,海拔高的地方的水能够流到低的地方,求解水能够流到太平洋和大西洋的所有位置。
```java
+
private int m, n;
private int[][] matrix;
private int[][] direction = {{0, 1}, {0, -1}, {1, 0}, {-1, 0}};
public List pacificAtlantic(int[][] matrix) {
List ret = new ArrayList<>();
- if (matrix == null || matrix.length == 0)
+ if (matrix == null || matrix.length == 0) {
return ret;
+ }
m = matrix.length;
n = matrix[0].length;
@@ -1489,24 +1517,30 @@ public List pacificAtlantic(int[][] matrix) {
dfs(m - 1, i, canReachA);
}
- for (int i = 0; i < m; i++)
- for (int j = 0; j < n; j++)
- if (canReachP[i][j] && canReachA[i][j])
+ for (int i = 0; i < m; i++) {
+ for (int j = 0; j < n; j++) {
+ if (canReachP[i][j] && canReachA[i][j]) {
ret.add(new int[]{i, j});
+ }
+ }
+ }
return ret;
}
private void dfs(int r, int c, boolean[][] canReach) {
- if (canReach[r][c])
+ if (canReach[r][c]) {
return;
-
+ }
canReach[r][c] = true;
for (int[] d : direction) {
int nextR = d[0] + r;
int nextC = d[1] + c;
- if (nextR < 0 || nextR >= m || nextC < 0 || nextC >= n || matrix[r][c] > matrix[nextR][nextC])
+ if (nextR < 0 || nextR >= m || nextC < 0 || nextC >= n
+ || matrix[r][c] > matrix[nextR][nextC]) {
+
continue;
+ }
dfs(nextR, nextC, canReach);
}
}
@@ -1536,25 +1570,28 @@ Output: ["ad", "ae", "af", "bd", "be", "bf", "cd", "ce", "cf"].
```
```java
+
private static final String[] KEYS = {"", "", "abc", "def", "ghi", "jkl", "mno", "pqrs", "tuv", "wxyz"};
public List letterCombinations(String digits) {
- List ret = new ArrayList<>();
- if (digits == null || digits.length() == 0)
- return ret;
- combination(new StringBuilder(), digits, ret);
- return ret;
+ List combinations = new ArrayList<>();
+ if (digits == null || digits.length() == 0) {
+ return combinations;
+ }
+ doCombination(new StringBuilder(), combinations, digits);
+ return combinations;
}
-private void combination(StringBuilder prefix, String digits, List ret) {
+private void doCombination(StringBuilder prefix, List combinations, final String digits) {
if (prefix.length() == digits.length()) {
- ret.add(prefix.toString());
+ combinations.add(prefix.toString());
return;
}
- String letters = KEYS[digits.charAt(prefix.length()) - '0'];
+ int curDigits = digits.charAt(prefix.length()) - '0';
+ String letters = KEYS[curDigits];
for (char c : letters.toCharArray()) {
prefix.append(c); // 添加
- combination(prefix, digits, ret);
+ doCombination(prefix, combinations, digits);
prefix.deleteCharAt(prefix.length() - 1); // 删除
}
}
@@ -1572,27 +1609,30 @@ return ["255.255.11.135", "255.255.111.35"].
```java
public List restoreIpAddresses(String s) {
List addresses = new ArrayList<>();
- StringBuilder path = new StringBuilder();
- doRestore(0, path, s, addresses);
+ StringBuilder tempAddress = new StringBuilder();
+ doRestore(0, tempAddress, addresses, s);
return addresses;
}
-private void doRestore(int k, StringBuilder path, String s, List addresses) {
+private void doRestore(int k, StringBuilder tempAddress, List addresses, String s) {
if (k == 4 || s.length() == 0) {
- if (k == 4 && s.length() == 0)
- addresses.add(path.toString());
+ if (k == 4 && s.length() == 0) {
+ addresses.add(tempAddress.toString());
+ }
return;
}
for (int i = 0; i < s.length() && i <= 2; i++) {
- if (i != 0 && s.charAt(0) == '0')
+ if (i != 0 && s.charAt(0) == '0') {
break;
+ }
String part = s.substring(0, i + 1);
if (Integer.valueOf(part) <= 255) {
- if (path.length() != 0)
+ if (tempAddress.length() != 0) {
part = "." + part;
- path.append(part);
- doRestore(k + 1, path, s.substring(i + 1), addresses);
- path.delete(path.length() - part.length(), path.length());
+ }
+ tempAddress.append(part);
+ doRestore(k + 1, tempAddress, addresses, s.substring(i + 1));
+ tempAddress.delete(tempAddress.length() - part.length(), tempAddress.length());
}
}
}
@@ -1616,38 +1656,50 @@ word = "ABCB", -> returns false.
```
```java
-private static int[][] direction = {{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
+private final static int[][] direction = {{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
private int m;
private int n;
public boolean exist(char[][] board, String word) {
- if (word == null || word.length() == 0)
+ if (word == null || word.length() == 0) {
return true;
- if (board == null || board.length == 0 || board[0].length == 0)
+ }
+ if (board == null || board.length == 0 || board[0].length == 0) {
return false;
+ }
m = board.length;
n = board[0].length;
- boolean[][] visited = new boolean[m][n];
+ boolean[][] hasVisited = new boolean[m][n];
- for (int i = 0; i < m; i++)
- for (int j = 0; j < n; j++)
- if (backtracking(board, visited, word, 0, i, j)) return true;
+ for (int r = 0; r < m; r++) {
+ for (int c = 0; c < n; c++) {
+ if (backtracking(0, r, c, hasVisited, board, word)) {
+ return true;
+ }
+ }
+ }
return false;
}
-private boolean backtracking(char[][] board, boolean[][] visited, String word, int start, int r, int c) {
- if (start == word.length())
+private boolean backtracking(int curLen, int r, int c, boolean[][] visited, final char[][] board, final String word) {
+ if (curLen == word.length()) {
return true;
- if (r < 0 || r >= m || c < 0 || c >= n || board[r][c] != word.charAt(start) || visited[r][c])
+ }
+ if (r < 0 || r >= m || c < 0 || c >= n
+ || board[r][c] != word.charAt(curLen) || visited[r][c]) {
+
return false;
+ }
visited[r][c] = true;
- for (int[] d : direction)
- if (backtracking(board, visited, word, start + 1, r + d[0], c + d[1]))
+ for (int[] d : direction) {
+ if (backtracking(curLen + 1, r + d[0], c + d[1], visited, board, word)) {
return true;
+ }
+ }
visited[r][c] = false;
@@ -1672,22 +1724,25 @@ private boolean backtracking(char[][] board, boolean[][] visited, String word, i
```
```java
+
public List binaryTreePaths(TreeNode root) {
- List paths = new ArrayList();
- if (root == null)
+ List paths = new ArrayList<>();
+ if (root == null) {
return paths;
+ }
List values = new ArrayList<>();
backtracking(root, values, paths);
return paths;
}
private void backtracking(TreeNode node, List values, List paths) {
- if (node == null)
+ if (node == null) {
return;
+ }
values.add(node.val);
- if (isLeaf(node))
+ if (isLeaf(node)) {
paths.add(buildPath(values));
- else {
+ } else {
backtracking(node.left, values, paths);
backtracking(node.right, values, paths);
}
@@ -1702,8 +1757,9 @@ private String buildPath(List values) {
StringBuilder str = new StringBuilder();
for (int i = 0; i < values.size(); i++) {
str.append(values.get(i));
- if (i != values.size() - 1)
+ if (i != values.size() - 1) {
str.append("->");
+ }
}
return str.toString();
}
@@ -1727,24 +1783,25 @@ private String buildPath(List values) {
```java
public List> permute(int[] nums) {
- List> ret = new ArrayList<>();
+ List> permutes = new ArrayList<>();
List permuteList = new ArrayList<>();
- boolean[] visited = new boolean[nums.length];
- backtracking(permuteList, visited, nums, ret);
- return ret;
+ boolean[] hasVisited = new boolean[nums.length];
+ backtracking(permuteList, permutes, hasVisited, nums);
+ return permutes;
}
-private void backtracking(List permuteList, boolean[] visited, int[] nums, List> ret) {
+private void backtracking(List permuteList, List> permutes, boolean[] visited, final int[] nums) {
if (permuteList.size() == nums.length) {
- ret.add(new ArrayList(permuteList)); // 重新构造一个 List
+ permutes.add(new ArrayList<>(permuteList)); // 重新构造一个 List
return;
}
for (int i = 0; i < visited.length; i++) {
- if (visited[i])
+ if (visited[i]) {
continue;
+ }
visited[i] = true;
permuteList.add(nums[i]);
- backtracking(permuteList, visited, nums, ret);
+ backtracking(permuteList, permutes, visited, nums);
permuteList.remove(permuteList.size() - 1);
visited[i] = false;
}
@@ -1760,34 +1817,36 @@ private void backtracking(List permuteList, boolean[] visited, int[] nu
[[1,1,2], [1,2,1], [2,1,1]]
```
-题目描述:数组元素可能含有相同的元素,进行排列时就有可能出现重复的排列,要求重复的排列只返回一个。
+数组元素可能含有相同的元素,进行排列时就有可能出现重复的排列,要求重复的排列只返回一个。
在实现上,和 Permutations 不同的是要先排序,然后在添加一个元素时,判断这个元素是否等于前一个元素,如果等于,并且前一个元素还未访问,那么就跳过这个元素。
```java
public List> permuteUnique(int[] nums) {
- List> ret = new ArrayList<>();
+ List> permutes = new ArrayList<>();
List permuteList = new ArrayList<>();
- Arrays.sort(nums);
- boolean[] visited = new boolean[nums.length];
- backtracking(permuteList, visited, nums, ret);
- return ret;
+ Arrays.sort(nums); // 排序
+ boolean[] hasVisited = new boolean[nums.length];
+ backtracking(permuteList, permutes, hasVisited, nums);
+ return permutes;
}
-private void backtracking(List permuteList, boolean[] visited, int[] nums, List> ret) {
+private void backtracking(List permuteList, List> permutes, boolean[] visited, final int[] nums) {
if (permuteList.size() == nums.length) {
- ret.add(new ArrayList(permuteList));
+ permutes.add(new ArrayList<>(permuteList));
return;
}
for (int i = 0; i < visited.length; i++) {
- if (i != 0 && nums[i] == nums[i - 1] && !visited[i - 1])
- continue; // 防止重复
- if (visited[i])
+ if (i != 0 && nums[i] == nums[i - 1] && !visited[i - 1]) {
+ continue; // 防止重复
+ }
+ if (visited[i]){
continue;
+ }
visited[i] = true;
permuteList.add(nums[i]);
- backtracking(permuteList, visited, nums, ret);
+ backtracking(permuteList, permutes, visited, nums);
permuteList.remove(permuteList.size() - 1);
visited[i] = false;
}
@@ -1812,21 +1871,20 @@ If n = 4 and k = 2, a solution is:
```java
public List> combine(int n, int k) {
- List> ret = new ArrayList<>();
+ List> combinations = new ArrayList<>();
List combineList = new ArrayList<>();
- backtracking(1, n, k, combineList, ret);
- return ret;
+ backtracking(combineList, combinations, 1, k, n);
+ return combinations;
}
-private void backtracking(int start, int n, int k, List combineList, List> ret) {
+private void backtracking(List combineList, List> combinations, int start, int k, final int n) {
if (k == 0) {
- ret.add(new ArrayList(combineList));
+ combinations.add(new ArrayList<>(combineList));
return;
}
-
for (int i = start; i <= n - k + 1; i++) { // 剪枝
combineList.add(i);
- backtracking(i + 1, n, k - 1, combineList, ret);
+ backtracking(combineList, combinations, i + 1, k - 1, n);
combineList.remove(combineList.size() - 1);
}
}
@@ -1844,21 +1902,23 @@ A solution set is:
```java
public List> combinationSum(int[] candidates, int target) {
- List> ret = new ArrayList<>();
- doCombination(candidates, target, 0, new ArrayList<>(), ret);
- return ret;
+ List> combinations = new ArrayList<>();
+ backtracking(new ArrayList<>(), combinations, 0, target, candidates);
+ return combinations;
}
-private void doCombination(int[] candidates, int target, int start, List list, List> ret) {
+private void backtracking(List tempCombination, List> combinations,
+ int start, int target, final int[] candidates) {
+
if (target == 0) {
- ret.add(new ArrayList<>(list));
+ combinations.add(new ArrayList<>(tempCombination));
return;
}
for (int i = start; i < candidates.length; i++) {
if (candidates[i] <= target) {
- list.add(candidates[i]);
- doCombination(candidates, target - candidates[i], i, list, ret);
- list.remove(list.size() - 1);
+ tempCombination.add(candidates[i]);
+ backtracking(tempCombination, combinations, i, target - candidates[i], candidates);
+ tempCombination.remove(tempCombination.size() - 1);
}
}
}
@@ -1881,26 +1941,29 @@ A solution set is:
```java
public List> combinationSum2(int[] candidates, int target) {
- List> ret = new ArrayList<>();
+ List> combinations = new ArrayList<>();
Arrays.sort(candidates);
- doCombination(candidates, target, 0, new ArrayList<>(), new boolean[candidates.length], ret);
- return ret;
+ backtracking(new ArrayList<>(), combinations, new boolean[candidates.length], 0, target, candidates);
+ return combinations;
}
-private void doCombination(int[] candidates, int target, int start, List list, boolean[] visited, List> ret) {
+private void backtracking(List tempCombination, List> combinations,
+ boolean[] hasVisited, int start, int target, final int[] candidates) {
+
if (target == 0) {
- ret.add(new ArrayList<>(list));
+ combinations.add(new ArrayList<>(tempCombination));
return;
}
for (int i = start; i < candidates.length; i++) {
- if (i != 0 && candidates[i] == candidates[i - 1] && !visited[i - 1])
+ if (i != 0 && candidates[i] == candidates[i - 1] && !hasVisited[i - 1]) {
continue;
+ }
if (candidates[i] <= target) {
- list.add(candidates[i]);
- visited[i] = true;
- doCombination(candidates, target - candidates[i], i + 1, list, visited, ret);
- visited[i] = false;
- list.remove(list.size() - 1);
+ tempCombination.add(candidates[i]);
+ hasVisited[i] = true;
+ backtracking(tempCombination, combinations, hasVisited, i + 1, target - candidates[i], candidates);
+ hasVisited[i] = false;
+ tempCombination.remove(tempCombination.size() - 1);
}
}
}
@@ -1918,27 +1981,30 @@ Output:
[[1,2,6], [1,3,5], [2,3,4]]
```
-题目描述:从 1-9 数字中选出 k 个数不重复的数,使得它们的和为 n。
+从 1-9 数字中选出 k 个数不重复的数,使得它们的和为 n。
```java
public List> combinationSum3(int k, int n) {
- List> ret = new ArrayList<>();
+ List> combinations = new ArrayList<>();
List path = new ArrayList<>();
- backtracking(k, n, path, 1, ret);
- return ret;
+ backtracking(k, n, 1, path, combinations);
+ return combinations;
}
-private void backtracking(int k, int n, List path, int start, List> ret) {
+private void backtracking(int k, int n, int start,
+ List tempCombination, List> combinations) {
+
if (k == 0 && n == 0) {
- ret.add(new ArrayList<>(path));
+ combinations.add(new ArrayList<>(tempCombination));
return;
}
- if (k == 0 || n == 0)
+ if (k == 0 || n == 0) {
return;
+ }
for (int i = start; i <= 9; i++) {
- path.add(i);
- backtracking(k - 1, n - i, path, i + 1, ret);
- path.remove(path.size() - 1);
+ tempCombination.add(i);
+ backtracking(k - 1, n - i, i + 1, tempCombination, combinations);
+ tempCombination.remove(tempCombination.size() - 1);
}
}
```
@@ -1947,29 +2013,29 @@ private void backtracking(int k, int n, List path, int start, List> ret;
-private List subsetList;
-
public List> subsets(int[] nums) {
- ret = new ArrayList<>();
- subsetList = new ArrayList<>();
- for (int i = 0; i <= nums.length; i++) // 不同的子集大小
- backtracking(0, i, nums);
- return ret;
+ List> subsets = new ArrayList<>();
+ List tempSubset = new ArrayList<>();
+ for (int size = 0; size <= nums.length; size++) {
+ backtracking(0, tempSubset, subsets, size, nums); // 不同的子集大小
+ }
+ return subsets;
}
-private void backtracking(int startIdx, int size, int[] nums) {
- if (subsetList.size() == size) {
- ret.add(new ArrayList(subsetList));
+private void backtracking(int start, List tempSubset, List> subsets,
+ final int size, final int[] nums) {
+
+ if (tempSubset.size() == size) {
+ subsets.add(new ArrayList<>(tempSubset));
return;
}
- for (int i = startIdx; i < nums.length; i++) {
- subsetList.add(nums[i]);
- backtracking(i + 1, size, nums);
- subsetList.remove(subsetList.size() - 1);
+ for (int i = start; i < nums.length; i++) {
+ tempSubset.add(nums[i]);
+ backtracking(i + 1, tempSubset, subsets, size, nums);
+ tempSubset.remove(tempSubset.size() - 1);
}
}
```
@@ -1993,35 +2059,33 @@ If nums = [1,2,2], a solution is:
```
```java
-private List> ret;
-private List subsetList;
-private boolean[] visited;
-
public List> subsetsWithDup(int[] nums) {
- ret = new ArrayList<>();
- subsetList = new ArrayList<>();
- visited = new boolean[nums.length];
Arrays.sort(nums);
-
- for (int i = 0; i <= nums.length; i++)
- backtracking(0, i, nums);
-
- return ret;
+ List> subsets = new ArrayList<>();
+ List tempSubset = new ArrayList<>();
+ boolean[] hasVisited = new boolean[nums.length];
+ for (int size = 0; size <= nums.length; size++) {
+ backtracking(0, tempSubset, subsets, hasVisited, size, nums); // 不同的子集大小
+ }
+ return subsets;
}
-private void backtracking(int startIdx, int size, int[] nums) {
- if (subsetList.size() == size) {
- ret.add(new ArrayList(subsetList));
+private void backtracking(int start, List tempSubset, List> subsets, boolean[] hasVisited,
+ final int size, final int[] nums) {
+
+ if (tempSubset.size() == size) {
+ subsets.add(new ArrayList<>(tempSubset));
return;
}
- for (int i = startIdx; i < nums.length; i++) {
- if (i != 0 && nums[i] == nums[i - 1] && !visited[i - 1])
+ for (int i = start; i < nums.length; i++) {
+ if (i != 0 && nums[i] == nums[i - 1] && !hasVisited[i - 1]) {
continue;
- subsetList.add(nums[i]);
- visited[i] = true;
- backtracking(i + 1, size, nums);
- visited[i] = false;
- subsetList.remove(subsetList.size() - 1);
+ }
+ tempSubset.add(nums[i]);
+ hasVisited[i] = true;
+ backtracking(i + 1, tempSubset, subsets, hasVisited, size, nums);
+ hasVisited[i] = false;
+ tempSubset.remove(tempSubset.size() - 1);
}
}
```
@@ -2041,32 +2105,33 @@ Return
```
```java
-private List> ret;
-
public List> partition(String s) {
- ret = new ArrayList<>();
- doPartition(new ArrayList<>(), s);
- return ret;
+ List> partitions = new ArrayList<>();
+ List tempPartition = new ArrayList<>();
+ doPartition(s, partitions, tempPartition);
+ return partitions;
}
-private void doPartition(List list, String s) {
+private void doPartition(String s, List> partitions, List tempPartition) {
if (s.length() == 0) {
- ret.add(new ArrayList<>(list));
+ partitions.add(new ArrayList<>(tempPartition));
return;
}
for (int i = 0; i < s.length(); i++) {
if (isPalindrome(s, 0, i)) {
- list.add(s.substring(0, i + 1));
- doPartition(list, s.substring(i + 1));
- list.remove(list.size() - 1);
+ tempPartition.add(s.substring(0, i + 1));
+ doPartition(s.substring(i + 1), partitions, tempPartition);
+ tempPartition.remove(tempPartition.size() - 1);
}
}
}
private boolean isPalindrome(String s, int begin, int end) {
- while (begin < end)
- if (s.charAt(begin++) != s.charAt(end--))
+ while (begin < end) {
+ if (s.charAt(begin++) != s.charAt(end--)) {
return false;
+ }
+ }
return true;
}
```
@@ -2087,17 +2152,20 @@ public void solveSudoku(char[][] board) {
this.board = board;
for (int i = 0; i < 9; i++)
for (int j = 0; j < 9; j++) {
- if (board[i][j] == '.')
+ if (board[i][j] == '.') {
continue;
+ }
int num = board[i][j] - '0';
rowsUsed[i][num] = true;
colsUsed[j][num] = true;
cubesUsed[cubeNum(i, j)][num] = true;
}
- for (int i = 0; i < 9; i++)
- for (int j = 0; j < 9; j++)
+ for (int i = 0; i < 9; i++) {
+ for (int j = 0; j < 9; j++) {
backtracking(i, j);
+ }
+ }
}
private boolean backtracking(int row, int col) {
@@ -2105,17 +2173,18 @@ private boolean backtracking(int row, int col) {
row = col == 8 ? row + 1 : row;
col = col == 8 ? 0 : col + 1;
}
-
- if (row == 9)
+ if (row == 9) {
return true;
-
+ }
for (int num = 1; num <= 9; num++) {
- if (rowsUsed[row][num] || colsUsed[col][num] || cubesUsed[cubeNum(row, col)][num])
+ if (rowsUsed[row][num] || colsUsed[col][num] || cubesUsed[cubeNum(row, col)][num]) {
continue;
+ }
rowsUsed[row][num] = colsUsed[col][num] = cubesUsed[cubeNum(row, col)][num] = true;
board[row][col] = (char) (num + '0');
- if (backtracking(row, col))
+ if (backtracking(row, col)) {
return true;
+ }
board[row][col] = '.';
rowsUsed[row][num] = colsUsed[col][num] = cubesUsed[cubeNum(row, col)][num] = false;
}
@@ -2135,7 +2204,7 @@ private int cubeNum(int i, int j) {
-题目描述:在 n\*n 的矩阵中摆放 n 个皇后,并且每个皇后不能在同一行,同一列,同一对角线上,求所有的 n 皇后的解。
+在 n\*n 的矩阵中摆放 n 个皇后,并且每个皇后不能在同一行,同一列,同一对角线上,求所有的 n 皇后的解。
一行一行地摆放,在确定一行中的那个皇后应该摆在哪一列时,需要用三个标记数组来确定某一列是否合法,这三个标记数组分别为:列标记数组、45 度对角线标记数组和 135 度对角线标记数组。
@@ -2148,7 +2217,7 @@ private int cubeNum(int i, int j) {
```java
-private List> ret;
+private List> solutions;
private char[][] nQueens;
private boolean[] colUsed;
private boolean[] diagonals45Used;
@@ -2156,32 +2225,35 @@ private boolean[] diagonals135Used;
private int n;
public List> solveNQueens(int n) {
- ret = new ArrayList<>();
+ solutions = new ArrayList<>();
nQueens = new char[n][n];
- for(int i = 0; i < n; i++)
+ for (int i = 0; i < n; i++) {
Arrays.fill(nQueens[i], '.');
+ }
colUsed = new boolean[n];
diagonals45Used = new boolean[2 * n - 1];
diagonals135Used = new boolean[2 * n - 1];
this.n = n;
backtracking(0);
- return ret;
+ return solutions;
}
private void backtracking(int row) {
if (row == n) {
List list = new ArrayList<>();
- for (char[] chars : nQueens)
+ for (char[] chars : nQueens) {
list.add(new String(chars));
- ret.add(list);
+ }
+ solutions.add(list);
return;
}
for (int col = 0; col < n; col++) {
int diagonals45Idx = row + col;
int diagonals135Idx = n - 1 - (row - col);
- if (colUsed[col] || diagonals45Used[diagonals45Idx] || diagonals135Used[diagonals135Idx])
+ if (colUsed[col] || diagonals45Used[diagonals45Idx] || diagonals135Used[diagonals135Idx]) {
continue;
+ }
nQueens[row][col] = 'Q';
colUsed[col] = diagonals45Used[diagonals45Idx] = diagonals135Used[diagonals135Idx] = true;
backtracking(row + 1);
@@ -2231,10 +2303,9 @@ public List diffWaysToCompute(String input) {
}
}
}
-
- if (ways.size() == 0)
+ if (ways.size() == 0) {
ways.add(Integer.valueOf(input));
-
+ }
return ways;
}
```