auto commit
This commit is contained in:
@ -23,7 +23,8 @@
|
||||
* [五、互斥同步](#五互斥同步)
|
||||
* [synchronized](#synchronized)
|
||||
* [ReentrantLock](#reentrantlock)
|
||||
* [synchronized 和 ReentrantLock 比较](#synchronized-和-reentrantlock-比较)
|
||||
* [比较](#比较)
|
||||
* [使用选择](#使用选择)
|
||||
* [六、线程之间的协作](#六线程之间的协作)
|
||||
* [join()](#join)
|
||||
* [wait() notify() notifyAll()](#wait-notify-notifyall)
|
||||
@ -498,6 +499,8 @@ public synchronized static void fun() {
|
||||
|
||||
## ReentrantLock
|
||||
|
||||
ReentrantLock 是 java.util.concurrent(J.U.C)包中的锁.
|
||||
|
||||
```java
|
||||
public class LockExample {
|
||||
|
||||
@ -529,23 +532,8 @@ public static void main(String[] args) {
|
||||
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
|
||||
```
|
||||
|
||||
ReentrantLock 是 java.util.concurrent(J.U.C)包中的锁,相比于 synchronized,它多了以下高级功能:
|
||||
|
||||
**1. 等待可中断**
|
||||
|
||||
当持有锁的线程长期不释放锁的时候,正在等待的线程可以选择放弃等待,改为处理其他事情。
|
||||
|
||||
**2. 可实现公平锁**
|
||||
|
||||
公平锁是指多个线程在等待同一个锁时,必须按照申请锁的时间顺序来依次获得锁。
|
||||
|
||||
synchronized 中的锁是非公平的,ReentrantLock 默认情况下也是非公平的,但可以通过带布尔值的构造函数要求使用公平锁。
|
||||
|
||||
**3. 锁绑定多个条件**
|
||||
|
||||
一个 ReentrantLock 对象可以同时绑定多个 Condition 对象。
|
||||
|
||||
## synchronized 和 ReentrantLock 比较
|
||||
## 比较
|
||||
|
||||
**1. 锁的实现**
|
||||
|
||||
@ -553,13 +541,25 @@ synchronized 是 JVM 实现的,而 ReentrantLock 是 JDK 实现的。
|
||||
|
||||
**2. 性能**
|
||||
|
||||
新版本 Java 对 synchronized 进行了很多优化,例如自旋锁等。目前来看它和 ReentrantLock 的性能基本持平了,因此性能因素不再是选择 ReentrantLock 的理由。synchronized 有更大的性能优化空间,应该优先考虑 synchronized。
|
||||
新版本 Java 对 synchronized 进行了很多优化,例如自旋锁等,synchronized 与 ReentrantLock 大致相同。
|
||||
|
||||
**3. 功能**
|
||||
**3. 等待可中断**
|
||||
|
||||
ReentrantLock 多了一些高级功能。
|
||||
当持有锁的线程长期不释放锁的时候,正在等待的线程可以选择放弃等待,改为处理其他事情。
|
||||
|
||||
**4. 使用选择**
|
||||
ReentrantLock 可中断,而 synchronized 不行。
|
||||
|
||||
**4. 公平锁**
|
||||
|
||||
公平锁是指多个线程在等待同一个锁时,必须按照申请锁的时间顺序来依次获得锁。
|
||||
|
||||
synchronized 中的锁是非公平的,ReentrantLock 默认情况下也是非公平的,但是也可以是公平的。
|
||||
|
||||
**5. 锁绑定多个条件**
|
||||
|
||||
一个 ReentrantLock 可以同时绑定多个 Condition 对象。
|
||||
|
||||
## 使用选择
|
||||
|
||||
除非需要使用 ReentrantLock 的高级功能,否则优先使用 synchronized。这是因为 synchronized 是 JVM 实现的一种锁机制,JVM 原生地支持它,而 ReentrantLock 不是所有的 JDK 版本都支持。并且使用 synchronized 不用担心没有释放锁而导致死锁问题,因为 JVM 会确保锁的释放。
|
||||
|
||||
@ -1232,7 +1232,7 @@ Thread 对象的 start() 方法调用先行发生于此线程的每一个动作
|
||||
|
||||
> Thread Join Rule
|
||||
|
||||
join() 方法返回先行发生于 Thread 对象的结束。
|
||||
Thread 对象的结束先行发生于 join() 方法返回。
|
||||
|
||||
<div align="center"> <img src="../pics//thread-join-rule.png" width=""/> </div><br>
|
||||
|
||||
@ -1240,7 +1240,7 @@ join() 方法返回先行发生于 Thread 对象的结束。
|
||||
|
||||
> Thread Interruption Rule
|
||||
|
||||
对线程 interrupt() 方法的调用先行发生于被中断线程的代码检测到中断事件的发生,可以通过 Thread.interrupted() 方法检测到是否有中断发生。
|
||||
对线程 interrupt() 方法的调用先行发生于被中断线程的代码检测到中断事件的发生,可以通过 interrupted() 方法检测到是否有中断发生。
|
||||
|
||||
### 7. 对象终结规则
|
||||
|
||||
@ -1385,22 +1385,21 @@ synchronized 和 ReentrantLock。
|
||||
|
||||
### 2. 非阻塞同步
|
||||
|
||||
互斥同步最主要的问题就是进行线程阻塞和唤醒所带来的性能问题,因此这种同步也称为阻塞同步(Blocking Synchronization)。
|
||||
互斥同步最主要的问题就是进行线程阻塞和唤醒所带来的性能问题,因此这种同步也称为阻塞同步。
|
||||
|
||||
从处理问题的方式上说,互斥同步属于一种悲观的并发策略,总是认为只要不去做正确的同步措施(例如加锁),那就肯定会出现问题,无论共享数据是否真的会出现竞争,它都要进行加锁(这里讨论的是概念模型,实际上虚拟机会优化掉很大一部分不必要的加锁)、用户态核心态转换、维护锁计数器和检查是否有被阻塞的线程需要唤醒等操作。
|
||||
互斥同步属于一种悲观的并发策略,总是认为只要不去做正确的同步措施,那就肯定会出现问题。论共享数据是否真的会出现竞争,它都要进行加锁(这里讨论的是概念模型,实际上虚拟机会优化掉很大一部分不必要的加锁)、用户态核心态转换、维护锁计数器和检查是否有被阻塞的线程需要唤醒等操作。
|
||||
|
||||
随着硬件指令集的发展,我们有了另外一个选择:基于冲突检测的乐观并发策略,通俗地说,就是先进行操作,如果没有其他线程争用共享数据,那操作就成功了;如果共享数据有争用,产生了冲突,那就再采取其他的补偿措施(最常见的补偿措施就是不断地重试,直到成功为止),这种乐观的并发策略的许多实现都不需要把线程挂起,因此这种同步操作称为非阻塞同步(Non-Blocking Synchronization)。
|
||||
随着硬件指令集的发展,我们可以使用基于冲突检测的乐观并发策略:先进行操作,如果没有其它线程争用共享数据,那操作就成功了,否则采取补偿措施(不断地重试,直到成功为止)。这种乐观的并发策略的许多实现都不需要把线程挂起,因此这种同步操作称为非阻塞同步。
|
||||
|
||||
乐观锁需要操作和冲突检测这两个步骤具备原子性,这里就不能再使用互斥同步来保证了,只能靠硬件来完成。硬件支持的原子性操作最典型的是:比较并交换(Compare-and-Swap,CAS)。
|
||||
乐观锁需要操作和冲突检测这两个步骤具备原子性,这里就不能再使用互斥同步来保证了,只能靠硬件来完成。
|
||||
|
||||
CAS 指令需要有 3 个操作数,分别是内存位置(在 Java 中可以简单理解为变量的内存地址,用 V 表示)、旧的预期值(用 A 表示)和新值(用 B 表示)。CAS 指令执行时,当且仅当 V 符合旧预期值 A 时,处理器用新值 B 更新 V 的值,否则它就不执行更新。但是无论是否更新了 V 的值,都会返回 V 的旧值,上述的处理过程是一个原子操作。
|
||||
硬件支持的原子性操作最典型的是:比较并交换(Compare-and-Swap,CAS)。CAS 指令需要有 3 个操作数,分别是内存地址 V、旧的预期值 A 和新值 B。当执行操作时,只有当 V 的值等于 A,才将 V 的值更新为 B。
|
||||
|
||||
J.U.C 包里面的整数原子类 AtomicInteger,其中的 compareAndSet() 和 getAndIncrement() 等方法都使用了 Unsafe 类的 CAS 操作。
|
||||
|
||||
在下面的代码 1 中,使用了 AtomicInteger 执行了自增的操作。代码 2 是 incrementAndGet() 的源码,它调用了 unsafe 的 getAndAddInt() 。代码 3 是 getAndAddInt() 源码,var1 指示内存位置,var2 指示新值,var4 指示操作需要加的数值,这里为 1。在代码 3 的实现中,通过 getIntVolatile(var1, var2) 得到旧的预期值。通过调用 compareAndSwapInt() 来进行 CAS 比较,如果 var2=var5,那么就更新内存地址为 var1 的变量为 var5+var4。可以看到代码 3 是在一个循环中进行,发生冲突的做法是不断的进行重试。
|
||||
以下代码使用了 AtomicInteger 执行了自增的操作。
|
||||
|
||||
```java
|
||||
// 代码 1
|
||||
private AtomicInteger cnt = new AtomicInteger();
|
||||
|
||||
public void add() {
|
||||
@ -1408,15 +1407,17 @@ public void add() {
|
||||
}
|
||||
```
|
||||
|
||||
以下代码是 incrementAndGet() 的源码,它调用了 unsafe 的 getAndAddInt() 。
|
||||
|
||||
```java
|
||||
// 代码 2
|
||||
public final int incrementAndGet() {
|
||||
return unsafe.getAndAddInt(this, valueOffset, 1) + 1;
|
||||
}
|
||||
```
|
||||
|
||||
以下代码是 getAndAddInt() 源码,var1 指示内存地址,var2 指示旧值,var4 指示操作需要加的数值,这里为 1。通过 getIntVolatile(var1, var2) 得到旧的预期值,通过调用 compareAndSwapInt() 来进行 CAS 比较,如果 var2==var5,那么就更新内存地址为 var1 的变量为 var5+var4。可以看到 getAndAddInt() 在一个循环中进行,发生冲突的做法是不断的进行重试。
|
||||
|
||||
```java
|
||||
// 代码 3
|
||||
public final int getAndAddInt(Object var1, long var2, int var4) {
|
||||
int var5;
|
||||
do {
|
||||
@ -1427,7 +1428,9 @@ public final int getAndAddInt(Object var1, long var2, int var4) {
|
||||
}
|
||||
```
|
||||
|
||||
ABA :如果一个变量初次读取的时候是 A 值,它的值被改成了 B,后来又被改回为 A,那 CAS 操作就会误认为它从来没有被改变过。J.U.C 包提供了一个带有标记的原子引用类“AtomicStampedReference”来解决这个问题,它可以通过控制变量值的版本来保证 CAS 的正确性。大部分情况下 ABA 问题不会影响程序并发的正确性,如果需要解决 ABA 问题,改用传统的互斥同步可能会比原子类更高效。
|
||||
ABA :如果一个变量初次读取的时候是 A 值,它的值被改成了 B,后来又被改回为 A,那 CAS 操作就会误认为它从来没有被改变过。
|
||||
|
||||
J.U.C 包提供了一个带有标记的原子引用类 AtomicStampedReference 来解决这个问题,它可以通过控制变量值的版本来保证 CAS 的正确性。大部分情况下 ABA 问题不会影响程序并发的正确性,如果需要解决 ABA 问题,改用传统的互斥同步可能会比原子类更高效。
|
||||
|
||||
### 3. 无同步方案
|
||||
|
||||
@ -1435,9 +1438,9 @@ ABA :如果一个变量初次读取的时候是 A 值,它的值被改成了
|
||||
|
||||
**(一)可重入代码(Reentrant Code)**
|
||||
|
||||
这种代码也叫做纯代码(Pure Code),可以在代码执行的任何时刻中断它,转而去执行另外一段代码(包括递归调用它本身),而在控制权返回后,原来的程序不会出现任何错误。相对线程安全来说,可重入性是更基本的特性,它可以保证线程安全,即所有的可重入的代码都是线程安全的,但是并非所有的线程安全的代码都是可重入的。
|
||||
这种代码也叫做纯代码(Pure Code),可以在代码执行的任何时刻中断它,转而去执行另外一段代码(包括递归调用它本身),而在控制权返回后,原来的程序不会出现任何错误。
|
||||
|
||||
可重入代码有一些共同的特征,例如不依赖存储在堆上的数据和公用的系统资源、用到的状态量都由参数中传入、不调用非可重入的方法等。我们可以通过一个简单的原则来判断代码是否具备可重入性:如果一个方法,它的返回结果是可以预测的,只要输入了相同的数据,就都能返回相同的结果,那它就满足可重入性的要求,当然也就是线程安全的。
|
||||
可重入代码有一些共同的特征,例如不依赖存储在堆上的数据和公用的系统资源、用到的状态量都由参数中传入、不调用非可重入的方法等。
|
||||
|
||||
**(二)栈封闭**
|
||||
|
||||
|
Reference in New Issue
Block a user