/********************************************************************** Filename : GThreads_sys.cpp Content : Windows specific thread-related (safe) functionality Created : May 5, 2003 Authors : Michael Antonov Copyright : (c) 2003 Scaleform Corp. All Rights Reserved. Licensees may use this file in accordance with the valid Scaleform Commercial License Agreement provided with the software. This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR ANY PURPOSE. **********************************************************************/ #include "GThreads.h" #include "GHash.h" #ifndef GFC_NO_THREADSUPPORT // RAGE - these thread classes are only available on windowsy platforms #if defined(GFC_OS_WIN32) || defined(GFC_OS_XBOX) || defined(GFC_OS_XBOX360) || defined(GFC_OS_WINCE) // For _beginthreadex / _endtheadex #include // ***** Classes Implemented class GLock; class GMutex; class GWaitCondition; // ***** Win32 Mutex implementation // Interface used internally in a mutex class GMutex_AreadyLockedAcquireInterface : public GAcquireInterface { public: // Mutex we belong to GMutex *pMutex; GMutex_AreadyLockedAcquireInterface() { pMutex = 0; } // Acquire interface implementation virtual bool CanAcquire(); virtual bool TryAcquire(); virtual bool TryAcquireCommit(); virtual bool TryAcquireCancel(); // GInterface - no implementation virtual void AddRef() { } virtual void Release(UInt flags=0) { GUNUSED(flags); } }; // Acquire interface implementation bool GMutex_AreadyLockedAcquireInterface::CanAcquire() { return 1; } bool GMutex_AreadyLockedAcquireInterface::TryAcquire() { return pMutex->TryAcquire(); } bool GMutex_AreadyLockedAcquireInterface::TryAcquireCommit() { return pMutex->TryAcquireCommit(); } bool GMutex_AreadyLockedAcquireInterface::TryAcquireCancel() { return pMutex->TryAcquireCancel(); } // *** Internal GMutex implementation structure class GMutexImpl : public GNewOverrideBase { // System mutex or semaphore HANDLE hMutexOrSemaphore; bool Recursive; volatile UInt LockCount; GMutex_AreadyLockedAcquireInterface AreadyLockedAcquire; friend class GWaitConditionImpl; public: // Constructor/destructor GMutexImpl(GMutex* pmutex, bool recursive = 1); ~GMutexImpl(); /* #if defined(GFC_BUILD_DEFINE_NEW) && defined(GFC_DEFINE_NEW) #undef new #endif // Allocation - ensure we use our allocator void * operator new(UPInt sz) { return GSTATICALLOC(sz); } void operator delete(void* pmem) { GSTATICFREE(pmem); } void* operator new(UPInt sz, int blocktype, const char* pfilename, int line) { return GSTATICALLOC(sz); } void operator delete(void *p, int blocktype, const char* pfilename, int line) { GSTATICFREE(p); } #if defined(GFC_BUILD_DEFINE_NEW) && defined(GFC_DEFINE_NEW) #define new GFC_DEFINE_NEW #endif */ // Locking functions void Lock(); bool TryLock(); void Unlock(GMutex* pmutex); // Returns 1 if the mutes is currently locked bool IsLockedByAnotherThread(GMutex* pmutex); bool IsSignaled() const; GAcquireInterface* GetAcquireInterface(GMutex* pmutex); }; // *** Constructor/destructor GMutexImpl::GMutexImpl(GMutex* pmutex, bool recursive) { AreadyLockedAcquire.pMutex = pmutex; Recursive = recursive; LockCount = 0; #if RSG_DURANGO hMutexOrSemaphore = Recursive ? CreateMutex(NULL, 0, NULL) : CreateSemaphoreExW(NULL, 1, 1, NULL, 0, SYNCHRONIZE | SEMAPHORE_MODIFY_STATE); #else hMutexOrSemaphore = Recursive ? CreateMutex(NULL, 0, NULL) : CreateSemaphore(NULL, 1, 1, NULL); #endif } GMutexImpl::~GMutexImpl() { CloseHandle(hMutexOrSemaphore); } // Lock and try lock void GMutexImpl::Lock() { if (::WaitForSingleObject(hMutexOrSemaphore, INFINITE) != WAIT_OBJECT_0) return; LockCount++; } bool GMutexImpl::TryLock() { DWORD ret; if ((ret=::WaitForSingleObject(hMutexOrSemaphore, 0)) != WAIT_OBJECT_0) return 0; LockCount++; return 1; } void GMutexImpl::Unlock(GMutex* pmutex) { UInt lockCount; LockCount--; lockCount = LockCount; // At this point handlers, if any, MUST already be created and // lazy initialization for pHandlers can not be used. To address this, // we allow an optional handler enable flag to be passed in constructor. // If we allowed lazy initialization, a call to AddHandlers in another // thread could access us after pHandlers read, causing the handler // to never be called (never informed about Unlock). GMutex::CallableHandlers handlers; pmutex->GetCallableHandlers(&handlers); // Release and Notify waitable objects if ((Recursive ? ReleaseMutex(hMutexOrSemaphore) : ReleaseSemaphore(hMutexOrSemaphore, 1, NULL)) != 0) { // Call wait handlers indirectly here in case owner // destroys mutex after finishing wait on it. if (lockCount == 0) handlers.CallWaitHandlers(); } } bool GMutexImpl::IsLockedByAnotherThread(GMutex* pmutex) { // There could be multiple interpretations of IsLocked with respect to current thread if (LockCount == 0) return 0; if (!TryLock()) return 1; Unlock(pmutex); return 0; } bool GMutexImpl::IsSignaled() const { // An mutex is signaled if it is not locked ANYWHERE // Note that this is different from IsLockedByAnotherThread function, // that takes current thread into account return LockCount == 0; } // Obtain the acquisition interface GAcquireInterface* GMutexImpl::GetAcquireInterface(GMutex* pmutex) { // If the mutex is already locked by us, return 'owned' acquire interface if (LockCount && !IsLockedByAnotherThread(pmutex)) return &AreadyLockedAcquire; // Otherwise, just return pointer to us return pmutex; } // *** Actual GMutex class implementation GMutex::GMutex(bool recursive, bool multiWait) : GWaitable(multiWait) { // NOTE: RefCount mode already thread-safe for all waitables. pImpl = new GMutexImpl(this, recursive); } GMutex::~GMutex() { delete pImpl; } // Lock and try lock void GMutex::Lock() { pImpl->Lock(); } bool GMutex::TryLock() { return pImpl->TryLock(); } void GMutex::Unlock() { pImpl->Unlock(this); } bool GMutex::IsLockedByAnotherThread() { return pImpl->IsLockedByAnotherThread(this); } bool GMutex::IsSignaled() const { return pImpl->IsSignaled(); } // Obtain the acquisition interface GAcquireInterface* GMutex::GetAcquireInterface() { return pImpl->GetAcquireInterface(this); } // Acquire interface implementation bool GMutex::CanAcquire() { return !IsLockedByAnotherThread(); } bool GMutex::TryAcquire() { return TryLock(); } bool GMutex::TryAcquireCommit() { // Nothing. return 1; } bool GMutex::TryAcquireCancel() { Unlock(); return 1; } // ***** Win32 Wait Condition Implementation // Internal implementation class class GWaitConditionImpl : public GNewOverrideBase { // Event pool entries for extra events struct EventPoolEntry : public GNewOverrideBase { HANDLE hEvent; EventPoolEntry *pNext; EventPoolEntry *pPrev; }; GLock WaitQueueLoc; // Stores free events that can be used later EventPoolEntry * pFreeEventList; // A queue of waiting objects to be signaled EventPoolEntry* pQueueHead; EventPoolEntry* pQueueTail; // Allocation functions for free events EventPoolEntry* GetNewEvent(); void ReleaseEvent(EventPoolEntry* pevent); // Queue operations void QueuePush(EventPoolEntry* pentry); EventPoolEntry* QueuePop(); void QueueFindAndRemove(EventPoolEntry* pentry); public: // Constructor/destructor GWaitConditionImpl(); ~GWaitConditionImpl(); // Release mutex and wait for condition. The mutex is re-aqured after the wait. bool Wait(GMutex *pmutex, UInt delay = GFC_WAIT_INFINITE); // Notify a condition, releasing at one object waiting void Notify(); // Notify a condition, releasing all objects waiting void NotifyAll(); }; GWaitConditionImpl::GWaitConditionImpl() { pFreeEventList = 0; pQueueHead = pQueueTail = 0; } GWaitConditionImpl::~GWaitConditionImpl() { // Free all the resources EventPoolEntry* p = pFreeEventList; EventPoolEntry* pentry; while(p) { // Move to next pentry = p; p = p->pNext; // Delete old ::CloseHandle(pentry->hEvent); delete pentry; } // Shouldn't we also consider the queue? // To be safe pFreeEventList = 0; pQueueHead = pQueueTail = 0; } // Allocation functions for free events GWaitConditionImpl::EventPoolEntry* GWaitConditionImpl::GetNewEvent() { EventPoolEntry* pentry; // If there are any free nodes, use them if (pFreeEventList) { pentry = pFreeEventList; pFreeEventList = pFreeEventList->pNext; } else { // Allocate a new node pentry = new EventPoolEntry; pentry->pNext = 0; pentry->pPrev = 0; // Non-signaled manual event pentry->hEvent = ::CreateEvent(NULL, TRUE, 0, NULL); } return pentry; } void GWaitConditionImpl::ReleaseEvent(EventPoolEntry* pevent) { // Mark event as non-signaled ::ResetEvent(pevent->hEvent); // And add it to free pool pevent->pNext = pFreeEventList; pevent->pPrev = 0; pFreeEventList = pevent; } // Queue operations void GWaitConditionImpl::QueuePush(EventPoolEntry* pentry) { // Items already exist? Just add to tail if (pQueueTail) { pentry->pPrev = pQueueTail; pQueueTail->pNext = pentry; pentry->pNext = 0; pQueueTail = pentry; } else { // No items in queue pentry->pNext = pentry->pPrev = 0; pQueueHead = pQueueTail = pentry; } } GWaitConditionImpl::EventPoolEntry* GWaitConditionImpl::QueuePop() { EventPoolEntry* pentry = pQueueHead; // No items, null pointer if (pentry) { // More items after this one? just grab the first item if (pQueueHead->pNext) { pQueueHead = pentry->pNext; pQueueHead->pPrev = 0; } else { // Last item left pQueueTail = pQueueHead = 0; } } return pentry; } void GWaitConditionImpl::QueueFindAndRemove(EventPoolEntry* pentry) { // Do an exhaustive search looking for an entry EventPoolEntry* p = pQueueHead; while(p) { // Entry found? Remove. if (p == pentry) { // Remove the node form the list // Prev link if (pentry->pPrev) pentry->pPrev->pNext = pentry->pNext; else pQueueHead = pentry->pNext; // Next link if (pentry->pNext) pentry->pNext->pPrev = pentry->pPrev; else pQueueTail = pentry->pPrev; // Done return; } // Move to next item p = p->pNext; } } bool GWaitConditionImpl::Wait(GMutex *pmutex, UInt delay) { bool result = 0; UInt i; UInt lockCount = pmutex->pImpl->LockCount; EventPoolEntry* pentry; // Mutex must have been locked if (lockCount == 0) return 0; // Add an object to the wait queue WaitQueueLoc.Lock(); QueuePush(pentry = GetNewEvent()); WaitQueueLoc.Unlock(); // Finally, release a mutex or semaphore if (pmutex->pImpl->Recursive) { // Release the recursive mutex N times pmutex->pImpl->LockCount = 0; for(i=0; ipImpl->hMutexOrSemaphore); // NOTE: Do not need to use CallableHanders here because mutex // can not be destroyed by user if we are to re-acquire it later. pmutex->CallWaitHandlers(); } else { pmutex->pImpl->LockCount = 0; ::ReleaseSemaphore(pmutex->pImpl->hMutexOrSemaphore, 1, NULL); pmutex->CallWaitHandlers(); } // Note that there is a gap here between mutex.Unlock() and Wait(). However, // if notify() comes in at this point in the other thread it will set our // corresponding event so wait will just fall through, as expected. // Block and wait on the event DWORD waitResult = ::WaitForSingleObject(pentry->hEvent, (delay == GFC_WAIT_INFINITE) ? INFINITE : delay); WaitQueueLoc.Lock(); switch(waitResult) { case WAIT_ABANDONED: case WAIT_OBJECT_0: result = 1; // Wait was successful, therefore the event entry should already be removed // So just add entry back to a free list ReleaseEvent(pentry); break; default: // Timeout, our entry should still be in a queue QueueFindAndRemove(pentry); ReleaseEvent(pentry); } WaitQueueLoc.Unlock(); // Re-aquire the mutex for(i=0; iLock(); // Return the result return result; } // Notify a condition, releasing the least object in a queue void GWaitConditionImpl::Notify() { GLock::Locker lock(&WaitQueueLoc); // Pop last entry & signal it EventPoolEntry* pentry = QueuePop(); if (pentry) ::SetEvent(pentry->hEvent); } // Notify a condition, releasing all objects waiting void GWaitConditionImpl::NotifyAll() { GLock::Locker lock(&WaitQueueLoc); // Pop and signal all events // NOTE : There is no need to release the events, it's the waiters job to do so EventPoolEntry* pentry = QueuePop(); while (pentry) { ::SetEvent(pentry->hEvent); pentry = QueuePop(); } } // *** Actual implementation of GWaitCondition GWaitCondition::GWaitCondition() { pImpl = new GWaitConditionImpl; } GWaitCondition::~GWaitCondition() { delete pImpl; } // Wait without a mutex bool GWaitCondition::Wait(GMutex *pmutex, UInt delay) { return pImpl->Wait(pmutex, delay); } // Notification void GWaitCondition::Notify() { pImpl->Notify(); } void GWaitCondition::NotifyAll() { pImpl->NotifyAll(); } // ***** Current thread // Per-thread variable // MA: Don't use TLS for now - portability issues with DLLs on 360, etc. /* #if !defined(GFC_CC_MSVC) || (GFC_CC_MSVC < 1300) __declspec(thread) GThread* pCurrentThread = 0; #else #pragma data_seg(".tls$") __declspec(thread) GThread* pCurrentThread = 0; #pragma data_seg(".rwdata") #endif */ // RAGE - this is so I can init some TLS variables void* GThread::EngineInitCallbackData = NULL; void (*GThread::EngineInitCallbackFn)(void*) = NULL; // *** GThread constructors. GThread::GThread(UPInt stackSize, int processor) : GWaitable(1) { // NOTE: RefCount mode already thread-safe for all GWaitable objects. CreateParams params; params.stackSize = stackSize; params.processor = processor; Init(params); } GThread::GThread(GThread::ThreadFn threadFunction, void* userHandle, UPInt stackSize, int processor, GThread::ThreadState initialState) : GWaitable(1) { CreateParams params(threadFunction, userHandle, stackSize, processor, initialState); Init(params); } GThread::GThread(const CreateParams& params) : GWaitable(1) { Init(params); } void GThread::Init(const CreateParams& params) { // Clear the variables ThreadFlags = 0; ThreadHandle = 0; ExitCode = 0; SuspendCount = 0; StackSize = params.stackSize; Processor = params.processor; Priority = params.priority; // Clear Function pointers ThreadFunction = params.threadFunction; UserHandle = params.userHandle; if (params.initialState != NotRunning) Start(params.initialState); } GThread::~GThread() { // Thread should not running while object is being destroyed, // this would indicate ref-counting issue. //GASSERT(IsRunning() == 0); // Clean up thread. CleanupSystemThread(); ThreadHandle = 0; } // *** Overridable User functions. // Default Run implementation SInt GThread::Run() { // Call pointer to function, if available. return (ThreadFunction) ? ThreadFunction(this, UserHandle) : 0; } void GThread::OnExit() { } // Finishes the thread and releases internal reference to it. void GThread::FinishAndRelease() { // Get callable handlers so that they can still be called // after GThread object is released. CallableHandlers handlers; GetCallableHandlers(&handlers); // Note: thread must be US. ThreadFlags &= (UInt32)~(GFC_THREAD_STARTED); ThreadFlags |= GFC_THREAD_FINISHED; // Release our reference; this is equivalent to 'delete this' // from the point of view of our thread. Release(); // Call handlers, if any, signifying completion. handlers.CallWaitHandlers(); } // *** ThreadList - used to tack all created threads class GThreadList : public GNewOverrideBase { //------------------------------------------------------------------------ struct ThreadHashOp { UPInt operator()(const GThread* ptr) { return (((UPInt)ptr) >> 6) ^ (UPInt)ptr; } }; GHashSet ThreadSet; GMutex ThreadMutex; GWaitCondition ThreadsEmpty; // Track the root thread that created us. DWORD RootThreadId; static GThreadList* volatile pRunningThreads; void addThread(GThread *pthread) { GMutex::Locker lock(&ThreadMutex); ThreadSet.Add(pthread); } void removeThread(GThread *pthread) { GMutex::Locker lock(&ThreadMutex); ThreadSet.Remove(pthread); if (ThreadSet.GetSize() == 0) ThreadsEmpty.Notify(); } void finishAllThreads() { // Only original root thread can call this. GASSERT(GetCurrentThreadId() == RootThreadId); GMutex::Locker lock(&ThreadMutex); while (ThreadSet.GetSize() != 0) ThreadsEmpty.Wait(&ThreadMutex); } public: GThreadList() { RootThreadId = GetCurrentThreadId(); } ~GThreadList() { } static void AddRunningThread(GThread *pthread) { // Non-atomic creation ok since only the root thread if (!pRunningThreads) { pRunningThreads = new GThreadList; GASSERT(pRunningThreads); } pRunningThreads->addThread(pthread); } // NOTE: 'pthread' might be a dead pointer when this is // called so it should not be accessed; it is only used // for removal. static void RemoveRunningThread(GThread *pthread) { GASSERT(pRunningThreads); pRunningThreads->removeThread(pthread); } static void FinishAllThreads() { // This is ok because only root thread can wait for other thread finish. if (pRunningThreads) { pRunningThreads->finishAllThreads(); delete pRunningThreads; pRunningThreads = 0; } } }; // By default, we have no thread list. GThreadList* volatile GThreadList::pRunningThreads = 0; // FinishAllThreads - exposed publicly in GThread. void GThread::FinishAllThreads() { GThreadList::FinishAllThreads(); } // *** Run override SInt GThread::PRun() { // Suspend us on start, if requested if (ThreadFlags & GFC_THREAD_START_SUSPENDED) { Suspend(); ThreadFlags &= (UInt32)~GFC_THREAD_START_SUSPENDED; } // Call the virtual run function ExitCode = Run(); return ExitCode; } /* MA: Don't use TLS for now. // Static function to return a pointer to the current thread void GThread::InitCurrentThread(GThread *pthread) { pCurrentThread = pthread; } // Static function to return a pointer to the current thread GThread* GThread::GetThread() { return pCurrentThread; } */ // *** User overridables bool GThread::GetExitFlag() const { return (ThreadFlags & GFC_THREAD_EXIT) != 0; } void GThread::SetExitFlag(bool exitFlag) { // The below is atomic since ThreadFlags is GAtomicInt. if (exitFlag) ThreadFlags |= GFC_THREAD_EXIT; else ThreadFlags &= (UInt32) ~GFC_THREAD_EXIT; } // Determines whether the thread was running and is now finished bool GThread::IsFinished() const { return (ThreadFlags & GFC_THREAD_FINISHED) != 0; } // Determines whether the thread is suspended bool GThread::IsSuspended() const { return SuspendCount > 0; } // Returns current thread state GThread::ThreadState GThread::GetThreadState() const { if (IsSuspended()) return Suspended; if (ThreadFlags & GFC_THREAD_STARTED) return Running; return NotRunning; } // ***** Thread management /* static */ int GThread::GetOSPriority(ThreadPriority p) { switch(p) { case GThread::CriticalPriority: return THREAD_PRIORITY_TIME_CRITICAL; case GThread::HighestPriority: return THREAD_PRIORITY_HIGHEST; case GThread::AboveNormalPriority: return THREAD_PRIORITY_ABOVE_NORMAL; case GThread::NormalPriority: return THREAD_PRIORITY_NORMAL; case GThread::BelowNormalPriority: return THREAD_PRIORITY_BELOW_NORMAL; case GThread::LowestPriority: return THREAD_PRIORITY_LOWEST; case GThread::IdlePriority: return THREAD_PRIORITY_IDLE; } return THREAD_PRIORITY_NORMAL; } // The actual first function called on thread start unsigned WINAPI GThread_Win32StartFn(void * phandle) { GThread * pthread = (GThread*)phandle; if (pthread->Processor != -1) { #if defined(GFC_OS_XBOX360) DWORD ret = XSetThreadProcessor(GetCurrentThread(), pthread->Processor); GFC_DEBUG_ERROR(ret == (DWORD)-1, "Could not set hardware processor for the thread"); GUNUSED(ret); #elif defined(GFC_OS_WIN32) && !RSG_DURANGO DWORD_PTR ret = SetThreadAffinityMask(GetCurrentThread(), (DWORD)pthread->Processor); GFC_DEBUG_ERROR(ret == 0, "Could not set hardware processor for the thread"); GUNUSED(ret); #endif } BOOL ret = ::SetThreadPriority(GetCurrentThread(), GThread::GetOSPriority(pthread->Priority)); GFC_DEBUG_ERROR(ret == 0, "Could not set thread priority"); GUNUSED(ret); // RAGE - added this so we can init TLS data if (GThread::EngineInitCallbackFn) { GThread::EngineInitCallbackFn(GThread::EngineInitCallbackData); } DWORD result = pthread->PRun(); // Signal the thread as done and release it atomically. pthread->FinishAndRelease(); // At this point GThread object might be dead; however we can still pass // it to RemoveRunningThread since it is only used as a key there. GThreadList::RemoveRunningThread(pthread); return (unsigned) result; } bool GThread::Start(ThreadState initialState) { if (initialState == NotRunning) return 0; // If the thread is already running then wait // until its finished to begin running this thread if ((GetThreadState() != NotRunning) && !Wait()) return 0; // Free old thread handle before creating the new one CleanupSystemThread(); // AddRef to us until the thread is finished. AddRef(); GThreadList::AddRunningThread(this); ExitCode = 0; SuspendCount = 0; ThreadFlags = (initialState == Running) ? 0 : GFC_THREAD_START_SUSPENDED; #if !RSG_DURANGO ThreadHandle = (HANDLE) _beginthreadex(0, (unsigned)StackSize, GThread_Win32StartFn, this, 0, 0); #else ThreadHandle = (HANDLE) ::CreateThread(NULL, StackSize, (LPTHREAD_START_ROUTINE)GThread_Win32StartFn, this, 0, NULL); #endif // Failed? Fail the function if (ThreadHandle == 0) { ThreadFlags = 0; Release(); GThreadList::RemoveRunningThread(this); return 0; } return 1; } // Suspend the thread until resumed bool GThread::Suspend() { // Can't suspend a thread that wasn't started if (!(ThreadFlags & GFC_THREAD_STARTED)) return 0; if (::SuspendThread(ThreadHandle) != 0xFFFFFFFF) { SuspendCount++; return 1; } return 0; } // Resumes currently suspended thread bool GThread::Resume() { // Can't suspend a thread that wasn't started if (!(ThreadFlags & GFC_THREAD_STARTED)) return 0; // Decrement count, and resume thread if it is 0 SInt32 oldCount = SuspendCount.ExchangeAdd_Acquire(-1); if (oldCount >= 1) { if (oldCount == 1) { if (::ResumeThread(ThreadHandle) != 0xFFFFFFFF) return 1; } else { return 1; } } return 0; } // Quits with an exit code void GThread::Exit(SInt exitCode) { // Can only exist the current thread. // MA: Don't use TLS for now. //if (GetThread() != this) // return; // Call the virtual OnExit function. OnExit(); // Signal this thread object as done and release it's references. FinishAndRelease(); GThreadList::RemoveRunningThread(this); #if RSG_PC // Call the exit function. _endthreadex((unsigned)exitCode); #endif } void GThread::CleanupSystemThread() { if (ThreadHandle != 0) { ::CloseHandle(ThreadHandle); ThreadHandle = 0; } } // *** Sleep functions // static bool GThread::Sleep(UInt secs) { ::Sleep(secs*1000); return 1; } // static bool GThread::MSleep(UInt msecs) { ::Sleep(msecs); return 1; } /* static */ int GThread::GetCPUCount() { #if RSG_DURANGO return 6; #elif defined(GFC_OS_WIN32) SYSTEM_INFO sysInfo; GetSystemInfo(&sysInfo); return (int) sysInfo.dwNumberOfProcessors; #elif defined(GFC_OS_XBOX) return 1; #elif defined(GFC_OS_XBOX360) return 6; #endif } #endif // RAGE - these thread classes are only available on windowsy platforms #endif