Files
GTASource/game/renderer/newWater.cpp
expvintl 419f2e4752 init
2025-02-23 17:40:52 +08:00

3246 lines
79 KiB
C++

#include "atl/slist.h"
typedef struct {
double x, y;
} point_t, vector_t;
/* Segment attributes */
typedef struct {
point_t v0, v1; /* two endpoints */
int is_inserted; /* inserted in trapezoidation yet ? */
int root0, root1; /* root nodes in Q */
int next; /* Next logical segment */
int prev; /* Previous segment */
} segment_t;
/* Trapezoid attributes */
typedef struct {
int lseg, rseg; /* two adjoining segments */
point_t hi, lo; /* max/min y-values */
int u0, u1;
int d0, d1;
int sink; /* pointer to corresponding in Q */
int usave, uside; /* I forgot what this means */
int state;
} trap_t;
/* Node attributes for every node in the query structure */
typedef struct {
int nodetype; /* Y-node or S-node */
int segnum;
point_t yval;
int trnum;
int parent; /* doubly linked DAG */
int left, right; /* children */
} node_t;
typedef struct {
int vnum;
int next; /* Circularly linked list */
int prev; /* describing the monotone */
int marked; /* polygon */
} monchain_t;
typedef struct {
point_t pt;
int vnext[4]; /* next vertices for the 4 chains */
int vpos[4]; /* position of v in the 4 chains */
int nextfree;
} vertexchain_t;
/* Node types */
#define T_X 1
#define T_Y 2
#define T_SINK 3
#define SEGSIZE 200 /* max# of segments. Determines how */
/* many points can be specified as */
/* input. If your datasets have large */
/* number of points, increase this */
/* value accordingly. */
#define QSIZE 8*SEGSIZE /* maximum table sizes */
#define TRSIZE 4*SEGSIZE /* max# trapezoids */
#define TRUE 1
#define FALSE 0
#define FIRSTPT 1 /* checking whether pt. is inserted */
#define LASTPT 2
#define C_EPS 1.0e-7 /* tolerance value: Used for making */
/* all decisions about collinearity or */
/* left/right of segment. Decrease */
/* this value if the input points are */
/* spaced very close together */
#define S_LEFT 1 /* for merge-direction */
#define S_RIGHT 2
#define ST_VALID 1 /* for trapezium state */
#define ST_INVALID 2
#define SP_SIMPLE_LRUP 1 /* for splitting trapezoids */
#define SP_SIMPLE_LRDN 2
#define SP_2UP_2DN 3
#define SP_2UP_LEFT 4
#define SP_2UP_RIGHT 5
#define SP_2DN_LEFT 6
#define SP_2DN_RIGHT 7
#define SP_NOSPLIT -1
#define TR_FROM_UP 1 /* for traverse-direction */
#define TR_FROM_DN 2
#define TRI_LHS 1
#define TRI_RHS 2
#define MAX(a, b) (((a) > (b)) ? (a) : (b))
#define MIN(a, b) (((a) < (b)) ? (a) : (b))
#define CROSS(v0, v1, v2) (((v1).x - (v0).x)*((v2).y - (v0).y) - ((v1).y - (v0).y)*((v2).x - (v0).x))
#define DOT(v0, v1) ((v0).x * (v1).x + (v0).y * (v1).y)
#define FP_EQUAL(s, t) (fabs(s - t) <= C_EPS)
#define CROSS_SINE(v0, v1) ((v0).x * (v1).y - (v1).x * (v0).y)
#define LENGTH(v0) (sqrt((v0).x * (v0).x + (v0).y * (v0).y))
static monchain_t mchain[TRSIZE]; /* Table to hold all the monotone */
/* polygons . Each monotone polygon */
/* is a circularly linked list */
static vertexchain_t vert[SEGSIZE]; /* chain init. information. This */
/* is used to decide which */
/* monotone polygon to split if */
/* there are several other */
/* polygons touching at the same */
/* vertex */
static int mon[SEGSIZE]; /* contains position of any vertex in */
/* the monotone chain for the polygon */
static int visited[TRSIZE];
static int chain_idx, op_idx, mon_idx;
static int triangulate_single_polygon(int, int, int, int (*)[3]);
static int traverse_polygon(int, int, int, int);
node_t qs[QSIZE]; /* Query structure */
trap_t tr[TRSIZE]; /* Trapezoid structure */
segment_t seg[SEGSIZE]; /* Segment table */
static int q_idx;
static int tr_idx;
//#ifdef __STDC__
//extern double log2(double);
//#else
//extern double log2();
//#endif
static int choose_idx;
static int permute[SEGSIZE];
/* Generate a random permutation of the segments 1..n */
int generate_random_ordering(int n)
{
register int i;
int m, st[SEGSIZE], *p;
choose_idx = 1;
for (i = 0; i <= n; i++)
st[i] = i;
p = st;
for (i = 1; i <= n; i++, p++)
{
m = fwRandom::GetRandomNumber() % (n + 1 - i) + 1;
permute[i] = p[m];
if (m != 1)
p[m] = p[1];
}
return 0;
}
/* Return the next segment in the generated random ordering of all the */
/* segments in S */
int choose_segment()
{
//int i;
#ifdef DEBUG
fprintf(stderr, "choose_segment: %d\n", permute[choose_idx]);
#endif
return permute[choose_idx++];
}
#ifdef STANDALONE
/* Read in the list of vertices from infile */
int read_segments(filename, genus)
char *filename;
int *genus;
{
FILE *infile;
int ccount;
register int i;
int ncontours, npoints, first, last;
if ((infile = fopen(filename, "r")) == NULL)
{
perror(filename);
return -1;
}
fscanf(infile, "%d", &ncontours);
if (ncontours <= 0)
return -1;
/* For every contour, read in all the points for the contour. The */
/* outer-most contour is read in first (points specified in */
/* anti-clockwise order). Next, the inner contours are input in */
/* clockwise order */
ccount = 0;
i = 1;
while (ccount < ncontours)
{
int j;
fscanf(infile, "%d", &npoints);
first = i;
last = first + npoints - 1;
for (j = 0; j < npoints; j++, i++)
{
fscanf(infile, "%lf%lf", &seg[i].v0.x, &seg[i].v0.y);
if (i == last)
{
seg[i].next = first;
seg[i].prev = i-1;
seg[i-1].v1 = seg[i].v0;
}
else if (i == first)
{
seg[i].next = i+1;
seg[i].prev = last;
seg[last].v1 = seg[i].v0;
}
else
{
seg[i].prev = i-1;
seg[i].next = i+1;
seg[i-1].v1 = seg[i].v0;
}
seg[i].is_inserted = FALSE;
}
ccount++;
}
*genus = ncontours - 1;
return i-1;
}
#endif
/* Get log*n for given n */
int math_logstar_n(int n)
{
register int i;
double v;
for (i = 0, v = (double) n; v >= 1; i++)
v = log2(v);
return (i - 1);
}
int math_N(int n,int h)
{
register int i;
double v;
for (i = 0, v = (int) n; i < h; i++)
v = log2(v);
return (int) ceil((double) 1.0*n/v);
}
/* Return a new node to be added into the query tree */
static int newnode()
{
if (q_idx < QSIZE)
return q_idx++;
else
{
fprintf(stderr, "newnode: Query-table overflow\n");
return -1;
}
}
/* Return a free trapezoid */
static int newtrap()
{
if (tr_idx < TRSIZE)
{
tr[tr_idx].lseg = -1;
tr[tr_idx].rseg = -1;
tr[tr_idx].state = ST_VALID;
return tr_idx++;
}
else
{
fprintf(stderr, "newtrap: Trapezoid-table overflow\n");
return -1;
}
}
/* Return the maximum of the two points into the yval structure */
static int _max(
point_t *yval,
point_t *v0,
point_t *v1)
{
if (v0->y > v1->y + C_EPS)
*yval = *v0;
else if (FP_EQUAL(v0->y, v1->y))
{
if (v0->x > v1->x + C_EPS)
*yval = *v0;
else
*yval = *v1;
}
else
*yval = *v1;
return 0;
}
/* Return the minimum of the two points into the yval structure */
static int _min(
point_t *yval,
point_t *v0,
point_t *v1)
{
if (v0->y < v1->y - C_EPS)
*yval = *v0;
else if (FP_EQUAL(v0->y, v1->y))
{
if (v0->x < v1->x)
*yval = *v0;
else
*yval = *v1;
}
else
*yval = *v1;
return 0;
}
int _greater_than(
point_t *v0,
point_t *v1)
{
if (v0->y > v1->y + C_EPS)
return TRUE;
else if (v0->y < v1->y - C_EPS)
return FALSE;
else
return (v0->x > v1->x);
}
int _equal_to(
point_t *v0,
point_t *v1)
{
return (FP_EQUAL(v0->y, v1->y) && FP_EQUAL(v0->x, v1->x));
}
int _greater_than_equal_to(
point_t *v0,
point_t *v1)
{
if (v0->y > v1->y + C_EPS)
return TRUE;
else if (v0->y < v1->y - C_EPS)
return FALSE;
else
return (v0->x >= v1->x);
}
int _less_than(
point_t *v0,
point_t *v1)
{
if (v0->y < v1->y - C_EPS)
return TRUE;
else if (v0->y > v1->y + C_EPS)
return FALSE;
else
return (v0->x < v1->x);
}
/* Initilialise the query structure (Q) and the trapezoid table (T)
* when the first segment is added to start the trapezoidation. The
* query-tree starts out with 4 trapezoids, one S-node and 2 Y-nodes
*
* 4
* -----------------------------------
* \
* 1 \ 2
* \
* -----------------------------------
* 3
*/
static int init_query_structure(int segnum)
{
int i1, i2, i3, i4, i5, i6, i7, root;
int t1, t2, t3, t4;
segment_t *s = &seg[segnum];
q_idx = tr_idx = 1;
memset((void *)tr, 0, sizeof(tr));
memset((void *)qs, 0, sizeof(qs));
i1 = newnode();
qs[i1].nodetype = T_Y;
_max(&qs[i1].yval, &s->v0, &s->v1); /* root */
root = i1;
qs[i1].right = i2 = newnode();
qs[i2].nodetype = T_SINK;
qs[i2].parent = i1;
qs[i1].left = i3 = newnode();
qs[i3].nodetype = T_Y;
_min(&qs[i3].yval, &s->v0, &s->v1); /* root */
qs[i3].parent = i1;
qs[i3].left = i4 = newnode();
qs[i4].nodetype = T_SINK;
qs[i4].parent = i3;
qs[i3].right = i5 = newnode();
qs[i5].nodetype = T_X;
qs[i5].segnum = segnum;
qs[i5].parent = i3;
qs[i5].left = i6 = newnode();
qs[i6].nodetype = T_SINK;
qs[i6].parent = i5;
qs[i5].right = i7 = newnode();
qs[i7].nodetype = T_SINK;
qs[i7].parent = i5;
t1 = newtrap(); /* middle left */
t2 = newtrap(); /* middle right */
t3 = newtrap(); /* bottom-most */
t4 = newtrap(); /* topmost */
tr[t1].hi = tr[t2].hi = tr[t4].lo = qs[i1].yval;
tr[t1].lo = tr[t2].lo = tr[t3].hi = qs[i3].yval;
tr[t4].hi.y = (double) (INFINITY);
tr[t4].hi.x = (double) (INFINITY);
tr[t3].lo.y = (double) -1* (INFINITY);
tr[t3].lo.x = (double) -1* (INFINITY);
tr[t1].rseg = tr[t2].lseg = segnum;
tr[t1].u0 = tr[t2].u0 = t4;
tr[t1].d0 = tr[t2].d0 = t3;
tr[t4].d0 = tr[t3].u0 = t1;
tr[t4].d1 = tr[t3].u1 = t2;
tr[t1].sink = i6;
tr[t2].sink = i7;
tr[t3].sink = i4;
tr[t4].sink = i2;
tr[t1].state = tr[t2].state = ST_VALID;
tr[t3].state = tr[t4].state = ST_VALID;
qs[i2].trnum = t4;
qs[i4].trnum = t3;
qs[i6].trnum = t1;
qs[i7].trnum = t2;
s->is_inserted = TRUE;
return root;
}
/* Retun TRUE if the vertex v is to the left of line segment no.
* segnum. Takes care of the degenerate cases when both the vertices
* have the same y--cood, etc.
*/
static int is_left_of(
int segnum,
point_t *v)
{
segment_t *s = &seg[segnum];
double area;
if (_greater_than(&s->v1, &s->v0)) /* seg. going upwards */
{
if (FP_EQUAL(s->v1.y, v->y))
{
if (v->x < s->v1.x)
area = 1.0;
else
area = -1.0;
}
else if (FP_EQUAL(s->v0.y, v->y))
{
if (v->x < s->v0.x)
area = 1.0;
else
area = -1.0;
}
else
area = CROSS(s->v0, s->v1, (*v));
}
else /* v0 > v1 */
{
if (FP_EQUAL(s->v1.y, v->y))
{
if (v->x < s->v1.x)
area = 1.0;
else
area = -1.0;
}
else if (FP_EQUAL(s->v0.y, v->y))
{
if (v->x < s->v0.x)
area = 1.0;
else
area = -1.0;
}
else
area = CROSS(s->v1, s->v0, (*v));
}
if (area > 0.0)
return TRUE;
else
return FALSE;
}
/* Returns true if the corresponding endpoint of the given segment is */
/* already inserted into the segment tree. Use the simple test of */
/* whether the segment which shares this endpoint is already inserted */
static int inserted(int segnum,int whichpt)
{
if (whichpt == FIRSTPT)
return seg[seg[segnum].prev].is_inserted;
else
return seg[seg[segnum].next].is_inserted;
}
/* This is query routine which determines which trapezoid does the
* point v lie in. The return value is the trapezoid number.
*/
int locate_endpoint(
point_t *v,
point_t *vo,
int r)
{
node_t *rptr = &qs[r];
switch (rptr->nodetype)
{
case T_SINK:
return rptr->trnum;
case T_Y:
if (_greater_than(v, &rptr->yval)) /* above */
return locate_endpoint(v, vo, rptr->right);
else if (_equal_to(v, &rptr->yval)) /* the point is already */
{ /* inserted. */
if (_greater_than(vo, &rptr->yval)) /* above */
return locate_endpoint(v, vo, rptr->right);
else
return locate_endpoint(v, vo, rptr->left); /* below */
}
else
return locate_endpoint(v, vo, rptr->left); /* below */
case T_X:
if (_equal_to(v, &seg[rptr->segnum].v0) ||
_equal_to(v, &seg[rptr->segnum].v1))
{
if (FP_EQUAL(v->y, vo->y)) /* horizontal segment */
{
if (vo->x < v->x)
return locate_endpoint(v, vo, rptr->left); /* left */
else
return locate_endpoint(v, vo, rptr->right); /* right */
}
else if (is_left_of(rptr->segnum, vo))
return locate_endpoint(v, vo, rptr->left); /* left */
else
return locate_endpoint(v, vo, rptr->right); /* right */
}
else if (is_left_of(rptr->segnum, v))
return locate_endpoint(v, vo, rptr->left); /* left */
else
return locate_endpoint(v, vo, rptr->right); /* right */
default:
fprintf(stderr, "Haggu !!!!!\n");
break;
}
return FALSE;
}
/* Thread in the segment into the existing trapezoidation. The
* limiting trapezoids are given by tfirst and tlast (which are the
* trapezoids containing the two endpoints of the segment. Merges all
* possible trapezoids which flank this segment and have been recently
* divided because of its insertion
*/
static int merge_trapezoids(
int segnum,
int tfirst,
int tlast,
int side)
{
int t, tnext, cond;
int ptnext;
/* First merge polys on the LHS */
t = tfirst;
while ((t > 0) && _greater_than_equal_to(&tr[t].lo, &tr[tlast].lo))
{
if (side == S_LEFT)
cond = ((((tnext = tr[t].d0) > 0) && (tr[tnext].rseg == segnum)) ||
(((tnext = tr[t].d1) > 0) && (tr[tnext].rseg == segnum)));
else
cond = ((((tnext = tr[t].d0) > 0) && (tr[tnext].lseg == segnum)) ||
(((tnext = tr[t].d1) > 0) && (tr[tnext].lseg == segnum)));
if (cond)
{
if ((tr[t].lseg == tr[tnext].lseg) &&
(tr[t].rseg == tr[tnext].rseg)) /* good neighbours */
{ /* merge them */
/* Use the upper node as the new node i.e. t */
ptnext = qs[tr[tnext].sink].parent;
if (qs[ptnext].left == tr[tnext].sink)
qs[ptnext].left = tr[t].sink;
else
qs[ptnext].right = tr[t].sink; /* redirect parent */
/* Change the upper neighbours of the lower trapezoids */
if ((tr[t].d0 = tr[tnext].d0) > 0)
if (tr[tr[t].d0].u0 == tnext)
tr[tr[t].d0].u0 = t;
else if (tr[tr[t].d0].u1 == tnext)
tr[tr[t].d0].u1 = t;
if ((tr[t].d1 = tr[tnext].d1) > 0)
if (tr[tr[t].d1].u0 == tnext)
tr[tr[t].d1].u0 = t;
else if (tr[tr[t].d1].u1 == tnext)
tr[tr[t].d1].u1 = t;
tr[t].lo = tr[tnext].lo;
tr[tnext].state = ST_INVALID; /* invalidate the lower */
/* trapezium */
}
else /* not good neighbours */
t = tnext;
}
else /* do not satisfy the outer if */
t = tnext;
} /* end-while */
return 0;
}
/* Add in the new segment into the trapezoidation and update Q and T
* structures. First locate the two endpoints of the segment in the
* Q-structure. Then start from the topmost trapezoid and go down to
* the lower trapezoid dividing all the trapezoids in between .
*/
static int add_segment(int segnum)
{
segment_t s;
int tu, tl, sk, tfirst, tlast;
int tfirstr, tlastr, tfirstl, tlastl;
int i1, i2, t, tn;
point_t tpt;
int /*tritop = 0, */tribot = 0, is_swapped = 0;
int tmptriseg;
s = seg[segnum];
if (_greater_than(&s.v1, &s.v0)) /* Get higher vertex in v0 */
{
int tmp;
tpt = s.v0;
s.v0 = s.v1;
s.v1 = tpt;
tmp = s.root0;
s.root0 = s.root1;
s.root1 = tmp;
is_swapped = TRUE;
}
if ((is_swapped) ? !inserted(segnum, LASTPT) :
!inserted(segnum, FIRSTPT)) /* insert v0 in the tree */
{
int tmp_d;
tu = locate_endpoint(&s.v0, &s.v1, s.root0);
tl = newtrap(); /* tl is the new lower trapezoid */
tr[tl].state = ST_VALID;
tr[tl] = tr[tu];
tr[tu].lo.y = tr[tl].hi.y = s.v0.y;
tr[tu].lo.x = tr[tl].hi.x = s.v0.x;
tr[tu].d0 = tl;
tr[tu].d1 = 0;
tr[tl].u0 = tu;
tr[tl].u1 = 0;
if (((tmp_d = tr[tl].d0) > 0) && (tr[tmp_d].u0 == tu))
tr[tmp_d].u0 = tl;
if (((tmp_d = tr[tl].d0) > 0) && (tr[tmp_d].u1 == tu))
tr[tmp_d].u1 = tl;
if (((tmp_d = tr[tl].d1) > 0) && (tr[tmp_d].u0 == tu))
tr[tmp_d].u0 = tl;
if (((tmp_d = tr[tl].d1) > 0) && (tr[tmp_d].u1 == tu))
tr[tmp_d].u1 = tl;
/* Now update the query structure and obtain the sinks for the */
/* two trapezoids */
i1 = newnode(); /* Upper trapezoid sink */
i2 = newnode(); /* Lower trapezoid sink */
sk = tr[tu].sink;
qs[sk].nodetype = T_Y;
qs[sk].yval = s.v0;
qs[sk].segnum = segnum; /* not really reqd ... maybe later */
qs[sk].left = i2;
qs[sk].right = i1;
qs[i1].nodetype = T_SINK;
qs[i1].trnum = tu;
qs[i1].parent = sk;
qs[i2].nodetype = T_SINK;
qs[i2].trnum = tl;
qs[i2].parent = sk;
tr[tu].sink = i1;
tr[tl].sink = i2;
tfirst = tl;
}
else /* v0 already present */
{ /* Get the topmost intersecting trapezoid */
tfirst = locate_endpoint(&s.v0, &s.v1, s.root0);
//tritop = 1;
}
if ((is_swapped) ? !inserted(segnum, FIRSTPT) :
!inserted(segnum, LASTPT)) /* insert v1 in the tree */
{
int tmp_d;
tu = locate_endpoint(&s.v1, &s.v0, s.root1);
tl = newtrap(); /* tl is the new lower trapezoid */
tr[tl].state = ST_VALID;
tr[tl] = tr[tu];
tr[tu].lo.y = tr[tl].hi.y = s.v1.y;
tr[tu].lo.x = tr[tl].hi.x = s.v1.x;
tr[tu].d0 = tl;
tr[tu].d1 = 0;
tr[tl].u0 = tu;
tr[tl].u1 = 0;
if (((tmp_d = tr[tl].d0) > 0) && (tr[tmp_d].u0 == tu))
tr[tmp_d].u0 = tl;
if (((tmp_d = tr[tl].d0) > 0) && (tr[tmp_d].u1 == tu))
tr[tmp_d].u1 = tl;
if (((tmp_d = tr[tl].d1) > 0) && (tr[tmp_d].u0 == tu))
tr[tmp_d].u0 = tl;
if (((tmp_d = tr[tl].d1) > 0) && (tr[tmp_d].u1 == tu))
tr[tmp_d].u1 = tl;
/* Now update the query structure and obtain the sinks for the */
/* two trapezoids */
i1 = newnode(); /* Upper trapezoid sink */
i2 = newnode(); /* Lower trapezoid sink */
sk = tr[tu].sink;
qs[sk].nodetype = T_Y;
qs[sk].yval = s.v1;
qs[sk].segnum = segnum; /* not really reqd ... maybe later */
qs[sk].left = i2;
qs[sk].right = i1;
qs[i1].nodetype = T_SINK;
qs[i1].trnum = tu;
qs[i1].parent = sk;
qs[i2].nodetype = T_SINK;
qs[i2].trnum = tl;
qs[i2].parent = sk;
tr[tu].sink = i1;
tr[tl].sink = i2;
tlast = tu;
}
else /* v1 already present */
{ /* Get the lowermost intersecting trapezoid */
tlast = locate_endpoint(&s.v1, &s.v0, s.root1);
tribot = 1;
}
/* Thread the segment into the query tree creating a new X-node */
/* First, split all the trapezoids which are intersected by s into */
/* two */
t = tfirst; /* topmost trapezoid */
while ((t > 0) &&
_greater_than_equal_to(&tr[t].lo, &tr[tlast].lo))
/* traverse from top to bot */
{
int t_sav, tn_sav;
sk = tr[t].sink;
i1 = newnode(); /* left trapezoid sink */
i2 = newnode(); /* right trapezoid sink */
qs[sk].nodetype = T_X;
qs[sk].segnum = segnum;
qs[sk].left = i1;
qs[sk].right = i2;
qs[i1].nodetype = T_SINK; /* left trapezoid (use existing one) */
qs[i1].trnum = t;
qs[i1].parent = sk;
qs[i2].nodetype = T_SINK; /* right trapezoid (allocate new) */
qs[i2].trnum = tn = newtrap();
tr[tn].state = ST_VALID;
qs[i2].parent = sk;
if (t == tfirst)
tfirstr = tn;
if (_equal_to(&tr[t].lo, &tr[tlast].lo))
tlastr = tn;
tr[tn] = tr[t];
tr[t].sink = i1;
tr[tn].sink = i2;
t_sav = t;
tn_sav = tn;
/* error */
if ((tr[t].d0 <= 0) && (tr[t].d1 <= 0)) /* case cannot arise */
{
fprintf(stderr, "add_segment: error\n");
break;
}
/* only one trapezoid below. partition t into two and make the */
/* two resulting trapezoids t and tn as the upper neighbours of */
/* the sole lower trapezoid */
else if ((tr[t].d0 > 0) && (tr[t].d1 <= 0))
{ /* Only one trapezoid below */
if ((tr[t].u0 > 0) && (tr[t].u1 > 0))
{ /* continuation of a chain from abv. */
if (tr[t].usave > 0) /* three upper neighbours */
{
if (tr[t].uside == S_LEFT)
{
tr[tn].u0 = tr[t].u1;
tr[t].u1 = -1;
tr[tn].u1 = tr[t].usave;
tr[tr[t].u0].d0 = t;
tr[tr[tn].u0].d0 = tn;
tr[tr[tn].u1].d0 = tn;
}
else /* intersects in the right */
{
tr[tn].u1 = -1;
tr[tn].u0 = tr[t].u1;
tr[t].u1 = tr[t].u0;
tr[t].u0 = tr[t].usave;
tr[tr[t].u0].d0 = t;
tr[tr[t].u1].d0 = t;
tr[tr[tn].u0].d0 = tn;
}
tr[t].usave = tr[tn].usave = 0;
}
else /* No usave.... simple case */
{
tr[tn].u0 = tr[t].u1;
tr[t].u1 = tr[tn].u1 = -1;
tr[tr[tn].u0].d0 = tn;
}
}
else
{ /* fresh seg. or upward cusp */
int tmp_u = tr[t].u0;
int td0;
if (((td0 = tr[tmp_u].d0) > 0) &&
((tr[tmp_u].d1) > 0))
{ /* upward cusp */
if ((tr[td0].rseg > 0) &&
!is_left_of(tr[td0].rseg, &s.v1))
{
tr[t].u0 = tr[t].u1 = tr[tn].u1 = -1;
tr[tr[tn].u0].d1 = tn;
}
else /* cusp going leftwards */
{
tr[tn].u0 = tr[tn].u1 = tr[t].u1 = -1;
tr[tr[t].u0].d0 = t;
}
}
else /* fresh segment */
{
tr[tr[t].u0].d0 = t;
tr[tr[t].u0].d1 = tn;
}
}
if (FP_EQUAL(tr[t].lo.y, tr[tlast].lo.y) &&
FP_EQUAL(tr[t].lo.x, tr[tlast].lo.x) && tribot)
{ /* bottom forms a triangle */
if (is_swapped)
tmptriseg = seg[segnum].prev;
else
tmptriseg = seg[segnum].next;
if ((tmptriseg > 0) && is_left_of(tmptriseg, &s.v0))
{
/* L-R downward cusp */
tr[tr[t].d0].u0 = t;
tr[tn].d0 = tr[tn].d1 = -1;
}
else
{
/* R-L downward cusp */
tr[tr[tn].d0].u1 = tn;
tr[t].d0 = tr[t].d1 = -1;
}
}
else
{
if ((tr[tr[t].d0].u0 > 0) && (tr[tr[t].d0].u1 > 0))
{
if (tr[tr[t].d0].u0 == t) /* passes thru LHS */
{
tr[tr[t].d0].usave = tr[tr[t].d0].u1;
tr[tr[t].d0].uside = S_LEFT;
}
else
{
tr[tr[t].d0].usave = tr[tr[t].d0].u0;
tr[tr[t].d0].uside = S_RIGHT;
}
}
tr[tr[t].d0].u0 = t;
tr[tr[t].d0].u1 = tn;
}
t = tr[t].d0;
}
else if ((tr[t].d0 <= 0) && (tr[t].d1 > 0))
{ /* Only one trapezoid below */
if ((tr[t].u0 > 0) && (tr[t].u1 > 0))
{ /* continuation of a chain from abv. */
if (tr[t].usave > 0) /* three upper neighbours */
{
if (tr[t].uside == S_LEFT)
{
tr[tn].u0 = tr[t].u1;
tr[t].u1 = -1;
tr[tn].u1 = tr[t].usave;
tr[tr[t].u0].d0 = t;
tr[tr[tn].u0].d0 = tn;
tr[tr[tn].u1].d0 = tn;
}
else /* intersects in the right */
{
tr[tn].u1 = -1;
tr[tn].u0 = tr[t].u1;
tr[t].u1 = tr[t].u0;
tr[t].u0 = tr[t].usave;
tr[tr[t].u0].d0 = t;
tr[tr[t].u1].d0 = t;
tr[tr[tn].u0].d0 = tn;
}
tr[t].usave = tr[tn].usave = 0;
}
else /* No usave.... simple case */
{
tr[tn].u0 = tr[t].u1;
tr[t].u1 = tr[tn].u1 = -1;
tr[tr[tn].u0].d0 = tn;
}
}
else
{ /* fresh seg. or upward cusp */
int tmp_u = tr[t].u0;
int td0;
if (((td0 = tr[tmp_u].d0) > 0) &&
((tr[tmp_u].d1) > 0))
{ /* upward cusp */
if ((tr[td0].rseg > 0) &&
!is_left_of(tr[td0].rseg, &s.v1))
{
tr[t].u0 = tr[t].u1 = tr[tn].u1 = -1;
tr[tr[tn].u0].d1 = tn;
}
else
{
tr[tn].u0 = tr[tn].u1 = tr[t].u1 = -1;
tr[tr[t].u0].d0 = t;
}
}
else /* fresh segment */
{
tr[tr[t].u0].d0 = t;
tr[tr[t].u0].d1 = tn;
}
}
if (FP_EQUAL(tr[t].lo.y, tr[tlast].lo.y) &&
FP_EQUAL(tr[t].lo.x, tr[tlast].lo.x) && tribot)
{ /* bottom forms a triangle */
int tmptriseg;
if (is_swapped)
tmptriseg = seg[segnum].prev;
else
tmptriseg = seg[segnum].next;
if ((tmptriseg > 0) && is_left_of(tmptriseg, &s.v0))
{
/* L-R downward cusp */
tr[tr[t].d1].u0 = t;
tr[tn].d0 = tr[tn].d1 = -1;
}
else
{
/* R-L downward cusp */
tr[tr[tn].d1].u1 = tn;
tr[t].d0 = tr[t].d1 = -1;
}
}
else
{
if ((tr[tr[t].d1].u0 > 0) && (tr[tr[t].d1].u1 > 0))
{
if (tr[tr[t].d1].u0 == t) /* passes thru LHS */
{
tr[tr[t].d1].usave = tr[tr[t].d1].u1;
tr[tr[t].d1].uside = S_LEFT;
}
else
{
tr[tr[t].d1].usave = tr[tr[t].d1].u0;
tr[tr[t].d1].uside = S_RIGHT;
}
}
tr[tr[t].d1].u0 = t;
tr[tr[t].d1].u1 = tn;
}
t = tr[t].d1;
}
/* two trapezoids below. Find out which one is intersected by */
/* this segment and proceed down that one */
else
{
double y0, yt;
point_t tmppt;
int tnext, i_d0;
i_d0 = FALSE;
if (FP_EQUAL(tr[t].lo.y, s.v0.y))
{
if (tr[t].lo.x > s.v0.x)
i_d0 = TRUE;
}
else
{
tmppt.y = y0 = tr[t].lo.y;
yt = (y0 - s.v0.y)/(s.v1.y - s.v0.y);
tmppt.x = s.v0.x + yt * (s.v1.x - s.v0.x);
if (_less_than(&tmppt, &tr[t].lo))
i_d0 = TRUE;
}
/* check continuity from the top so that the lower-neighbour */
/* values are properly filled for the upper trapezoid */
if ((tr[t].u0 > 0) && (tr[t].u1 > 0))
{ /* continuation of a chain from abv. */
if (tr[t].usave > 0) /* three upper neighbours */
{
if (tr[t].uside == S_LEFT)
{
tr[tn].u0 = tr[t].u1;
tr[t].u1 = -1;
tr[tn].u1 = tr[t].usave;
tr[tr[t].u0].d0 = t;
tr[tr[tn].u0].d0 = tn;
tr[tr[tn].u1].d0 = tn;
}
else /* intersects in the right */
{
tr[tn].u1 = -1;
tr[tn].u0 = tr[t].u1;
tr[t].u1 = tr[t].u0;
tr[t].u0 = tr[t].usave;
tr[tr[t].u0].d0 = t;
tr[tr[t].u1].d0 = t;
tr[tr[tn].u0].d0 = tn;
}
tr[t].usave = tr[tn].usave = 0;
}
else /* No usave.... simple case */
{
tr[tn].u0 = tr[t].u1;
tr[tn].u1 = -1;
tr[t].u1 = -1;
tr[tr[tn].u0].d0 = tn;
}
}
else
{ /* fresh seg. or upward cusp */
int tmp_u = tr[t].u0;
int td0;
if (((td0 = tr[tmp_u].d0) > 0) &&
((tr[tmp_u].d1) > 0))
{ /* upward cusp */
if ((tr[td0].rseg > 0) &&
!is_left_of(tr[td0].rseg, &s.v1))
{
tr[t].u0 = tr[t].u1 = tr[tn].u1 = -1;
tr[tr[tn].u0].d1 = tn;
}
else
{
tr[tn].u0 = tr[tn].u1 = tr[t].u1 = -1;
tr[tr[t].u0].d0 = t;
}
}
else /* fresh segment */
{
tr[tr[t].u0].d0 = t;
tr[tr[t].u0].d1 = tn;
}
}
if (FP_EQUAL(tr[t].lo.y, tr[tlast].lo.y) &&
FP_EQUAL(tr[t].lo.x, tr[tlast].lo.x) && tribot)
{
/* this case arises only at the lowest trapezoid.. i.e.
tlast, if the lower endpoint of the segment is
already inserted in the structure */
tr[tr[t].d0].u0 = t;
tr[tr[t].d0].u1 = -1;
tr[tr[t].d1].u0 = tn;
tr[tr[t].d1].u1 = -1;
tr[tn].d0 = tr[t].d1;
tr[t].d1 = tr[tn].d1 = -1;
tnext = tr[t].d1;
}
else if (i_d0)
/* intersecting d0 */
{
tr[tr[t].d0].u0 = t;
tr[tr[t].d0].u1 = tn;
tr[tr[t].d1].u0 = tn;
tr[tr[t].d1].u1 = -1;
/* new code to determine the bottom neighbours of the */
/* newly partitioned trapezoid */
tr[t].d1 = -1;
tnext = tr[t].d0;
}
else /* intersecting d1 */
{
tr[tr[t].d0].u0 = t;
tr[tr[t].d0].u1 = -1;
tr[tr[t].d1].u0 = t;
tr[tr[t].d1].u1 = tn;
/* new code to determine the bottom neighbours of the */
/* newly partitioned trapezoid */
tr[tn].d0 = tr[t].d1;
tr[tn].d1 = -1;
tnext = tr[t].d1;
}
t = tnext;
}
tr[t_sav].rseg = tr[tn_sav].lseg = segnum;
} /* end-while */
/* Now combine those trapezoids which share common segments. We can */
/* use the pointers to the parent to connect these together. This */
/* works only because all these new trapezoids have been formed */
/* due to splitting by the segment, and hence have only one parent */
tfirstl = tfirst;
tlastl = tlast;
merge_trapezoids(segnum, tfirstl, tlastl, S_LEFT);
merge_trapezoids(segnum, tfirstr, tlastr, S_RIGHT);
seg[segnum].is_inserted = TRUE;
return 0;
}
/* Update the roots stored for each of the endpoints of the segment.
* This is done to speed up the location-query for the endpoint when
* the segment is inserted into the trapezoidation subsequently
*/
static int find_new_roots(int segnum)
{
segment_t *s = &seg[segnum];
if (s->is_inserted)
return 0;
s->root0 = locate_endpoint(&s->v0, &s->v1, s->root0);
s->root0 = tr[s->root0].sink;
s->root1 = locate_endpoint(&s->v1, &s->v0, s->root1);
s->root1 = tr[s->root1].sink;
return 0;
}
/* Main routine to perform trapezoidation */
int construct_trapezoids(int nseg)
{
register int i;
int root, h;
/* Add the first segment and get the query structure and trapezoid */
/* list initialised */
root = init_query_structure(choose_segment());
for (i = 1; i <= nseg; i++)
seg[i].root0 = seg[i].root1 = root;
for (h = 1; h <= math_logstar_n(nseg); h++)
{
for (i = math_N(nseg, h -1) + 1; i <= math_N(nseg, h); i++)
add_segment(choose_segment());
/* Find a new root for each of the segment endpoints */
for (i = 1; i <= nseg; i++)
find_new_roots(i);
}
for (i = math_N(nseg, math_logstar_n(nseg)) + 1; i <= nseg; i++)
add_segment(choose_segment());
return 0;
}
/* Function returns TRUE if the trapezoid lies inside the polygon */
static int inside_polygon(trap_t *t)
{
int rseg = t->rseg;
if (t->state == ST_INVALID)
return 0;
if ((t->lseg <= 0) || (t->rseg <= 0))
return 0;
if (((t->u0 <= 0) && (t->u1 <= 0)) ||
((t->d0 <= 0) && (t->d1 <= 0))) /* triangle */
return (_greater_than(&seg[rseg].v1, &seg[rseg].v0));
return 0;
}
/* return a new mon structure from the table */
static int newmon()
{
return ++mon_idx;
}
/* return a new chain element from the table */
static int new_chain_element()
{
return ++chain_idx;
}
static double get_angle(
point_t *vp0,
point_t *vpnext,
point_t *vp1)
{
point_t v0, v1;
v0.x = vpnext->x - vp0->x;
v0.y = vpnext->y - vp0->y;
v1.x = vp1->x - vp0->x;
v1.y = vp1->y - vp0->y;
if (CROSS_SINE(v0, v1) >= 0) /* sine is positive */
return DOT(v0, v1)/LENGTH(v0)/LENGTH(v1);
else
return (-1.0 * DOT(v0, v1)/LENGTH(v0)/LENGTH(v1) - 2);
}
/* (v0, v1) is the new diagonal to be added to the polygon. Find which */
/* chain to use and return the positions of v0 and v1 in p and q */
static int get_vertex_positions(
int v0,
int v1,
int *ip,
int *iq)
{
vertexchain_t *vp0, *vp1;
register int i;
double angle, temp;
int tp, tq;
vp0 = &vert[v0];
vp1 = &vert[v1];
/* p is identified as follows. Scan from (v0, v1) rightwards till */
/* you hit the first segment starting from v0. That chain is the */
/* chain of our interest */
angle = -4.0;
for (i = 0; i < 4; i++)
{
if (vp0->vnext[i] <= 0)
continue;
if ((temp = get_angle(&vp0->pt, &(vert[vp0->vnext[i]].pt),
&vp1->pt)) > angle)
{
angle = temp;
tp = i;
}
}
*ip = tp;
/* Do similar actions for q */
angle = -4.0;
for (i = 0; i < 4; i++)
{
if (vp1->vnext[i] <= 0)
continue;
if ((temp = get_angle(&vp1->pt, &(vert[vp1->vnext[i]].pt),
&vp0->pt)) > angle)
{
angle = temp;
tq = i;
}
}
*iq = tq;
return 0;
}
/* v0 and v1 are specified in anti-clockwise order with respect to
* the current monotone polygon mcur. Split the current polygon into
* two polygons using the diagonal (v0, v1)
*/
static int make_new_monotone_poly(
int mcur,
int v0,
int v1)
{
int p, q, ip, iq;
int mnew = newmon();
int i, j, nf0, nf1;
vertexchain_t *vp0, *vp1;
vp0 = &vert[v0];
vp1 = &vert[v1];
get_vertex_positions(v0, v1, &ip, &iq);
p = vp0->vpos[ip];
q = vp1->vpos[iq];
/* At this stage, we have got the positions of v0 and v1 in the */
/* desired chain. Now modify the linked lists */
i = new_chain_element(); /* for the new list */
j = new_chain_element();
mchain[i].vnum = v0;
mchain[j].vnum = v1;
mchain[i].next = mchain[p].next;
mchain[mchain[p].next].prev = i;
mchain[i].prev = j;
mchain[j].next = i;
mchain[j].prev = mchain[q].prev;
mchain[mchain[q].prev].next = j;
mchain[p].next = q;
mchain[q].prev = p;
nf0 = vp0->nextfree;
nf1 = vp1->nextfree;
vp0->vnext[ip] = v1;
vp0->vpos[nf0] = i;
vp0->vnext[nf0] = mchain[mchain[i].next].vnum;
vp1->vpos[nf1] = j;
vp1->vnext[nf1] = v0;
vp0->nextfree++;
vp1->nextfree++;
#ifdef DEBUG
fprintf(stderr, "make_poly: mcur = %d, (v0, v1) = (%d, %d)\n",
mcur, v0, v1);
fprintf(stderr, "next posns = (p, q) = (%d, %d)\n", p, q);
#endif
mon[mcur] = p;
mon[mnew] = i;
return mnew;
}
/* Main routine to get monotone polygons from the trapezoidation of
* the polygon.
*/
int monotonate_trapezoids(
int n)
{
register int i;
int tr_start;
memset((void *)vert, 0, sizeof(vert));
memset((void *)visited, 0, sizeof(visited));
memset((void *)mchain, 0, sizeof(mchain));
memset((void *)mon, 0, sizeof(mon));
/* First locate a trapezoid which lies inside the polygon */
/* and which is triangular */
for (i = 0; i < TRSIZE; i++)
if (inside_polygon(&tr[i]))
break;
tr_start = i;
/* Initialise the mon data-structure and start spanning all the */
/* trapezoids within the polygon */
#if 0
for (i = 1; i <= n; i++)
{
mchain[i].prev = i - 1;
mchain[i].next = i + 1;
mchain[i].vnum = i;
vert[i].pt = seg[i].v0;
vert[i].vnext[0] = i + 1; /* next vertex */
vert[i].vpos[0] = i; /* locn. of next vertex */
vert[i].nextfree = 1;
}
mchain[1].prev = n;
mchain[n].next = 1;
vert[n].vnext[0] = 1;
vert[n].vpos[0] = n;
chain_idx = n;
mon_idx = 0;
mon[0] = 1; /* position of any vertex in the first */
/* chain */
#else
for (i = 1; i <= n; i++)
{
mchain[i].prev = seg[i].prev;
mchain[i].next = seg[i].next;
mchain[i].vnum = i;
vert[i].pt = seg[i].v0;
vert[i].vnext[0] = seg[i].next; /* next vertex */
vert[i].vpos[0] = i; /* locn. of next vertex */
vert[i].nextfree = 1;
}
chain_idx = n;
mon_idx = 0;
mon[0] = 1; /* position of any vertex in the first */
/* chain */
#endif
/* traverse the polygon */
if (tr[tr_start].u0 > 0)
traverse_polygon(0, tr_start, tr[tr_start].u0, TR_FROM_UP);
else if (tr[tr_start].d0 > 0)
traverse_polygon(0, tr_start, tr[tr_start].d0, TR_FROM_DN);
/* return the number of polygons created */
return newmon();
}
/* recursively visit all the trapezoids */
static int traverse_polygon(
int mcur,
int trnum,
int from,
int dir)
{
trap_t *t = &tr[trnum];
int /*howsplit, */mnew;
int v0, v1/*, v0next*//*, v1next*/;
int retval/*, tmp*/;
//int do_switch = FALSE;
if ((trnum <= 0) || visited[trnum])
return 0;
visited[trnum] = TRUE;
/* We have much more information available here. */
/* rseg: goes upwards */
/* lseg: goes downwards */
/* Initially assume that dir = TR_FROM_DN (from the left) */
/* Switch v0 and v1 if necessary afterwards */
/* special cases for triangles with cusps at the opposite ends. */
/* take care of this first */
if ((t->u0 <= 0) && (t->u1 <= 0))
{
if ((t->d0 > 0) && (t->d1 > 0)) /* downward opening triangle */
{
v0 = tr[t->d1].lseg;
v1 = t->lseg;
if (from == t->d1)
{
//do_switch = TRUE;
mnew = make_new_monotone_poly(mcur, v1, v0);
traverse_polygon(mcur, t->d1, trnum, TR_FROM_UP);
traverse_polygon(mnew, t->d0, trnum, TR_FROM_UP);
}
else
{
mnew = make_new_monotone_poly(mcur, v0, v1);
traverse_polygon(mcur, t->d0, trnum, TR_FROM_UP);
traverse_polygon(mnew, t->d1, trnum, TR_FROM_UP);
}
}
else
{
retval = SP_NOSPLIT; /* Just traverse all neighbours */
traverse_polygon(mcur, t->u0, trnum, TR_FROM_DN);
traverse_polygon(mcur, t->u1, trnum, TR_FROM_DN);
traverse_polygon(mcur, t->d0, trnum, TR_FROM_UP);
traverse_polygon(mcur, t->d1, trnum, TR_FROM_UP);
}
}
else if ((t->d0 <= 0) && (t->d1 <= 0))
{
if ((t->u0 > 0) && (t->u1 > 0)) /* upward opening triangle */
{
v0 = t->rseg;
v1 = tr[t->u0].rseg;
if (from == t->u1)
{
//do_switch = TRUE;
mnew = make_new_monotone_poly(mcur, v1, v0);
traverse_polygon(mcur, t->u1, trnum, TR_FROM_DN);
traverse_polygon(mnew, t->u0, trnum, TR_FROM_DN);
}
else
{
mnew = make_new_monotone_poly(mcur, v0, v1);
traverse_polygon(mcur, t->u0, trnum, TR_FROM_DN);
traverse_polygon(mnew, t->u1, trnum, TR_FROM_DN);
}
}
else
{
retval = SP_NOSPLIT; /* Just traverse all neighbours */
traverse_polygon(mcur, t->u0, trnum, TR_FROM_DN);
traverse_polygon(mcur, t->u1, trnum, TR_FROM_DN);
traverse_polygon(mcur, t->d0, trnum, TR_FROM_UP);
traverse_polygon(mcur, t->d1, trnum, TR_FROM_UP);
}
}
else if ((t->u0 > 0) && (t->u1 > 0))
{
if ((t->d0 > 0) && (t->d1 > 0)) /* downward + upward cusps */
{
v0 = tr[t->d1].lseg;
v1 = tr[t->u0].rseg;
retval = SP_2UP_2DN;
if (((dir == TR_FROM_DN) && (t->d1 == from)) ||
((dir == TR_FROM_UP) && (t->u1 == from)))
{
//do_switch = TRUE;
mnew = make_new_monotone_poly(mcur, v1, v0);
traverse_polygon(mcur, t->u1, trnum, TR_FROM_DN);
traverse_polygon(mcur, t->d1, trnum, TR_FROM_UP);
traverse_polygon(mnew, t->u0, trnum, TR_FROM_DN);
traverse_polygon(mnew, t->d0, trnum, TR_FROM_UP);
}
else
{
mnew = make_new_monotone_poly(mcur, v0, v1);
traverse_polygon(mcur, t->u0, trnum, TR_FROM_DN);
traverse_polygon(mcur, t->d0, trnum, TR_FROM_UP);
traverse_polygon(mnew, t->u1, trnum, TR_FROM_DN);
traverse_polygon(mnew, t->d1, trnum, TR_FROM_UP);
}
}
else /* only downward cusp */
{
if (_equal_to(&t->lo, &seg[t->lseg].v1))
{
v0 = tr[t->u0].rseg;
v1 = seg[t->lseg].next;
retval = SP_2UP_LEFT;
if ((dir == TR_FROM_UP) && (t->u0 == from))
{
//do_switch = TRUE;
mnew = make_new_monotone_poly(mcur, v1, v0);
traverse_polygon(mcur, t->u0, trnum, TR_FROM_DN);
traverse_polygon(mnew, t->d0, trnum, TR_FROM_UP);
traverse_polygon(mnew, t->u1, trnum, TR_FROM_DN);
traverse_polygon(mnew, t->d1, trnum, TR_FROM_UP);
}
else
{
mnew = make_new_monotone_poly(mcur, v0, v1);
traverse_polygon(mcur, t->u1, trnum, TR_FROM_DN);
traverse_polygon(mcur, t->d0, trnum, TR_FROM_UP);
traverse_polygon(mcur, t->d1, trnum, TR_FROM_UP);
traverse_polygon(mnew, t->u0, trnum, TR_FROM_DN);
}
}
else
{
v0 = t->rseg;
v1 = tr[t->u0].rseg;
retval = SP_2UP_RIGHT;
if ((dir == TR_FROM_UP) && (t->u1 == from))
{
//do_switch = TRUE;
mnew = make_new_monotone_poly(mcur, v1, v0);
traverse_polygon(mcur, t->u1, trnum, TR_FROM_DN);
traverse_polygon(mnew, t->d1, trnum, TR_FROM_UP);
traverse_polygon(mnew, t->d0, trnum, TR_FROM_UP);
traverse_polygon(mnew, t->u0, trnum, TR_FROM_DN);
}
else
{
mnew = make_new_monotone_poly(mcur, v0, v1);
traverse_polygon(mcur, t->u0, trnum, TR_FROM_DN);
traverse_polygon(mcur, t->d0, trnum, TR_FROM_UP);
traverse_polygon(mcur, t->d1, trnum, TR_FROM_UP);
traverse_polygon(mnew, t->u1, trnum, TR_FROM_DN);
}
}
}
}
else if ((t->u0 > 0) || (t->u1 > 0)) /* no downward cusp */
{
if ((t->d0 > 0) && (t->d1 > 0)) /* only upward cusp */
{
if (_equal_to(&t->hi, &seg[t->lseg].v0))
{
v0 = tr[t->d1].lseg;
v1 = t->lseg;
retval = SP_2DN_LEFT;
if (!((dir == TR_FROM_DN) && (t->d0 == from)))
{
//do_switch = TRUE;
mnew = make_new_monotone_poly(mcur, v1, v0);
traverse_polygon(mcur, t->u1, trnum, TR_FROM_DN);
traverse_polygon(mcur, t->d1, trnum, TR_FROM_UP);
traverse_polygon(mcur, t->u0, trnum, TR_FROM_DN);
traverse_polygon(mnew, t->d0, trnum, TR_FROM_UP);
}
else
{
mnew = make_new_monotone_poly(mcur, v0, v1);
traverse_polygon(mcur, t->d0, trnum, TR_FROM_UP);
traverse_polygon(mnew, t->u0, trnum, TR_FROM_DN);
traverse_polygon(mnew, t->u1, trnum, TR_FROM_DN);
traverse_polygon(mnew, t->d1, trnum, TR_FROM_UP);
}
}
else
{
v0 = tr[t->d1].lseg;
v1 = seg[t->rseg].next;
retval = SP_2DN_RIGHT;
if ((dir == TR_FROM_DN) && (t->d1 == from))
{
//do_switch = TRUE;
mnew = make_new_monotone_poly(mcur, v1, v0);
traverse_polygon(mcur, t->d1, trnum, TR_FROM_UP);
traverse_polygon(mnew, t->u1, trnum, TR_FROM_DN);
traverse_polygon(mnew, t->u0, trnum, TR_FROM_DN);
traverse_polygon(mnew, t->d0, trnum, TR_FROM_UP);
}
else
{
mnew = make_new_monotone_poly(mcur, v0, v1);
traverse_polygon(mcur, t->u0, trnum, TR_FROM_DN);
traverse_polygon(mcur, t->d0, trnum, TR_FROM_UP);
traverse_polygon(mcur, t->u1, trnum, TR_FROM_DN);
traverse_polygon(mnew, t->d1, trnum, TR_FROM_UP);
}
}
}
else /* no cusp */
{
if (_equal_to(&t->hi, &seg[t->lseg].v0) &&
_equal_to(&t->lo, &seg[t->rseg].v0))
{
v0 = t->rseg;
v1 = t->lseg;
retval = SP_SIMPLE_LRDN;
if (dir == TR_FROM_UP)
{
//do_switch = TRUE;
mnew = make_new_monotone_poly(mcur, v1, v0);
traverse_polygon(mcur, t->u0, trnum, TR_FROM_DN);
traverse_polygon(mcur, t->u1, trnum, TR_FROM_DN);
traverse_polygon(mnew, t->d1, trnum, TR_FROM_UP);
traverse_polygon(mnew, t->d0, trnum, TR_FROM_UP);
}
else
{
mnew = make_new_monotone_poly(mcur, v0, v1);
traverse_polygon(mcur, t->d1, trnum, TR_FROM_UP);
traverse_polygon(mcur, t->d0, trnum, TR_FROM_UP);
traverse_polygon(mnew, t->u0, trnum, TR_FROM_DN);
traverse_polygon(mnew, t->u1, trnum, TR_FROM_DN);
}
}
else if (_equal_to(&t->hi, &seg[t->rseg].v1) &&
_equal_to(&t->lo, &seg[t->lseg].v1))
{
v0 = seg[t->rseg].next;
v1 = seg[t->lseg].next;
retval = SP_SIMPLE_LRUP;
if (dir == TR_FROM_UP)
{
//do_switch = TRUE;
mnew = make_new_monotone_poly(mcur, v1, v0);
traverse_polygon(mcur, t->u0, trnum, TR_FROM_DN);
traverse_polygon(mcur, t->u1, trnum, TR_FROM_DN);
traverse_polygon(mnew, t->d1, trnum, TR_FROM_UP);
traverse_polygon(mnew, t->d0, trnum, TR_FROM_UP);
}
else
{
mnew = make_new_monotone_poly(mcur, v0, v1);
traverse_polygon(mcur, t->d1, trnum, TR_FROM_UP);
traverse_polygon(mcur, t->d0, trnum, TR_FROM_UP);
traverse_polygon(mnew, t->u0, trnum, TR_FROM_DN);
traverse_polygon(mnew, t->u1, trnum, TR_FROM_DN);
}
}
else /* no split possible */
{
retval = SP_NOSPLIT;
traverse_polygon(mcur, t->u0, trnum, TR_FROM_DN);
traverse_polygon(mcur, t->d0, trnum, TR_FROM_UP);
traverse_polygon(mcur, t->u1, trnum, TR_FROM_DN);
traverse_polygon(mcur, t->d1, trnum, TR_FROM_UP);
}
}
}
return retval;
}
/* For each monotone polygon, find the ymax and ymin (to determine the */
/* two y-monotone chains) and pass on this monotone polygon for greedy */
/* triangulation. */
/* Take care not to triangulate duplicate monotone polygons */
int triangulate_monotone_polygons(
int nvert,
int nmonpoly,
int op[][3])
{
register int i;
point_t ymax, ymin;
int p, vfirst, posmax/*, posmin*/, v;
int vcount, processed;
#ifdef DEBUG
for (i = 0; i < nmonpoly; i++)
{
fprintf(stderr, "\n\nPolygon %d: ", i);
vfirst = mchain[mon[i]].vnum;
p = mchain[mon[i]].next;
fprintf (stderr, "%d ", mchain[mon[i]].vnum);
while (mchain[p].vnum != vfirst)
{
fprintf(stderr, "%d ", mchain[p].vnum);
p = mchain[p].next;
}
}
fprintf(stderr, "\n");
#endif
op_idx = 0;
for (i = 0; i < nmonpoly; i++)
{
vcount = 1;
processed = FALSE;
vfirst = mchain[mon[i]].vnum;
ymax = ymin = vert[vfirst].pt;
posmax = /*posmin = */mon[i];
mchain[mon[i]].marked = TRUE;
p = mchain[mon[i]].next;
while ((v = mchain[p].vnum) != vfirst)
{
if (mchain[p].marked)
{
processed = TRUE;
break; /* break from while */
}
else
mchain[p].marked = TRUE;
if (_greater_than(&vert[v].pt, &ymax))
{
ymax = vert[v].pt;
posmax = p;
}
if (_less_than(&vert[v].pt, &ymin))
{
ymin = vert[v].pt;
//posmin = p;
}
p = mchain[p].next;
vcount++;
}
if (processed) /* Go to next polygon */
continue;
if (vcount == 3) /* already a triangle */
{
op[op_idx][0] = mchain[p].vnum;
op[op_idx][1] = mchain[mchain[p].next].vnum;
op[op_idx][2] = mchain[mchain[p].prev].vnum;
op_idx++;
}
else /* triangulate the polygon */
{
v = mchain[mchain[posmax].next].vnum;
if (_equal_to(&vert[v].pt, &ymin))
{ /* LHS is a single line */
triangulate_single_polygon(nvert, posmax, TRI_LHS, op);
}
else
triangulate_single_polygon(nvert, posmax, TRI_RHS, op);
}
}
#ifdef DEBUG
for (i = 0; i < op_idx; i++)
fprintf(stderr, "tri #%d: (%d, %d, %d)\n", i, op[i][0], op[i][1],
op[i][2]);
#endif
return op_idx;
}
/* A greedy corner-cutting algorithm to triangulate a y-monotone
* polygon in O(n) time.
* Joseph O-Rourke, Computational Geometry in C.
*/
static int triangulate_single_polygon(
int nvert,
int posmax,
int side,
int op[][3])
{
register int v;
int rc[SEGSIZE], ri = 0; /* reflex chain */
int endv, tmp, vpos;
if (side == TRI_RHS) /* RHS segment is a single segment */
{
rc[0] = mchain[posmax].vnum;
tmp = mchain[posmax].next;
rc[1] = mchain[tmp].vnum;
ri = 1;
vpos = mchain[tmp].next;
v = mchain[vpos].vnum;
if ((endv = mchain[mchain[posmax].prev].vnum) == 0)
endv = nvert;
}
else /* LHS is a single segment */
{
tmp = mchain[posmax].next;
rc[0] = mchain[tmp].vnum;
tmp = mchain[tmp].next;
rc[1] = mchain[tmp].vnum;
ri = 1;
vpos = mchain[tmp].next;
v = mchain[vpos].vnum;
endv = mchain[posmax].vnum;
}
while ((v != endv) || (ri > 1))
{
if (ri > 0) /* reflex chain is non-empty */
{
if (CROSS(vert[v].pt, vert[rc[ri - 1]].pt,
vert[rc[ri]].pt) > 0)
{ /* convex corner: cut if off */
op[op_idx][0] = rc[ri - 1];
op[op_idx][1] = rc[ri];
op[op_idx][2] = v;
op_idx++;
ri--;
}
else /* non-convex */
{ /* add v to the chain */
ri++;
rc[ri] = v;
vpos = mchain[vpos].next;
v = mchain[vpos].vnum;
}
}
else /* reflex-chain empty: add v to the */
{ /* reflex chain and advance it */
rc[++ri] = v;
vpos = mchain[vpos].next;
v = mchain[vpos].vnum;
}
} /* end-while */
/* reached the bottom vertex. Add in the triangle formed */
op[op_idx][0] = rc[ri - 1];
op[op_idx][1] = rc[ri];
op[op_idx][2] = v;
op_idx++;
ri--;
return 0;
}
static int initialise(int n)
{
register int i;
for (i = 1; i <= n; i++)
seg[i].is_inserted = FALSE;
generate_random_ordering(n);
return 0;
}
/* Input specified as contours.
* Outer contour must be anti-clockwise.
* All inner contours must be clockwise.
*
* Every contour is specified by giving all its points in order. No
* point shoud be repeated. i.e. if the outer contour is a square,
* only the four distinct endpoints shopudl be specified in order.
*
* ncontours: #contours
* cntr: An array describing the number of points in each
* contour. Thus, cntr[i] = #points in the i'th contour.
* vertices: Input array of vertices. Vertices for each contour
* immediately follow those for previous one. Array location
* vertices[0] must NOT be used (i.e. i/p starts from
* vertices[1] instead. The output triangles are
* specified w.r.t. the indices of these vertices.
* triangles: Output array to hold triangles.
*
* Enough space must be allocated for all the arrays before calling
* this routine
*/
int triangulate_polygon( int ncontours, int cntr[], double (*vertices)[2], int (*triangles)[3])
{
register int i;
int nmonpoly, ccount, npoints/*, genus*/;
int n;
memset((void *)seg, 0, sizeof(seg));
ccount = 0;
i = 1;
while (ccount < ncontours)
{
int j;
int first, last;
npoints = cntr[ccount];
first = i;
last = first + npoints - 1;
for (j = 0; j < npoints; j++, i++)
{
seg[i].v0.x = vertices[i][0];
seg[i].v0.y = vertices[i][1];
if (i == last)
{
seg[i].next = first;
seg[i].prev = i-1;
seg[i-1].v1 = seg[i].v0;
}
else if (i == first)
{
seg[i].next = i+1;
seg[i].prev = last;
seg[last].v1 = seg[i].v0;
}
else
{
seg[i].prev = i-1;
seg[i].next = i+1;
seg[i-1].v1 = seg[i].v0;
}
seg[i].is_inserted = FALSE;
}
ccount++;
}
//*genus = ncontours - 1;
n = i-1;
initialise(n);
construct_trapezoids(n);
nmonpoly = monotonate_trapezoids(n);
return triangulate_monotone_polygons(n, nmonpoly, triangles);
}
/* This function returns TRUE or FALSE depending upon whether the
* vertex is inside the polygon or not. The polygon must already have
* been triangulated before this routine is called.
* This routine will always detect all the points belonging to the
* set (polygon-area - polygon-boundary). The return value for points
* on the boundary is not consistent!!!
*/
int is_point_inside_polygon( double vertex[2] )
{
point_t v;
int trnum, rseg;
trap_t *t;
v.x = vertex[0];
v.y = vertex[1];
trnum = locate_endpoint(&v, &v, 1);
t = &tr[trnum];
if (t->state == ST_INVALID)
return FALSE;
if ((t->lseg <= 0) || (t->rseg <= 0))
return FALSE;
rseg = t->rseg;
return _greater_than_equal_to(&seg[rseg].v1, &seg[rseg].v0);
}
#define USE_FAT_VTXDCL 0
// Water Tesselation test (v5, some WiP are checked in //depot/user/alex.hadjadj
// Current limitation:
// - It's rather slow
// - It doesn't deal with certain bad cases and long triangles, creating holes and nasty looking edge, this is why the default grid value is 10
// (Expected normal value should be around 20) and that the frustum is pushed by 10 meters (expected final requirement at around 1m).
// - it's quite liberal in it's memory usage.
// - there's a lot of testing/compare/special case due to some slopiness on my part with maintaining polygones
// - It relies on the fact that the simulation area is close to the camera (if not centered around it) : It should be able to with more variable positioning
// by adding a second splitplane during the first lowres/highres split.
// - The file is currently included as a CPP file straight into water.cpp, this is disgusting.
// - Move to SPU. See particle renderer for edge buffer re-use and plants renderer for various other bits and pieces.
// - There's various ready to use tesselator to play with:
// barycentric.h : add a verts in the middle, create 3 trees based on it.
// linear.h : simple linear tesselation.
// linearDualEdge.h : simple linear tesselation with 2 edge: 1 edge get tesselated to one level, the two other's to the second level.
// progressiveLinear.h : progressive linear tesselation
// progressiveLinear2.h : progressive linar tesselation with a different edge selection
// progressiveLinearDualEdge.h : progressive linear tesselation with two level, based on Linear2
// All splitting/clipping operation operate on the following structure.
// To add extra components, just add and make sure that the add/sub/div/mul functions are updated to
// operate as expected on them.
struct ALIGNAS(16) vtxDcl {
Vector3 pos;
#if USE_FAT_VTXDCL
Vector3 col;
#endif // USE_FAT_VTXDCL
inline void add(const vtxDcl &vtx)
{
pos += vtx.pos;
#if USE_FAT_VTXDCL
col += vtx.col;
#endif // USE_FAT_VTXDCL
}
inline void sub(const vtxDcl &vtx)
{
pos -= vtx.pos;
#if USE_FAT_VTXDCL
col -= vtx.col;
#endif // USE_FAT_VTXDCL
}
inline void div(const float d)
{
pos /= d;
#if USE_FAT_VTXDCL
col /= d;
#endif // USE_FAT_VTXDCL
}
inline void mul(const float d)
{
pos *= d;
#if USE_FAT_VTXDCL
col *= d;
#endif // USE_FAT_VTXDCL
}
}
#if (__PS3) && VECTORIZED
#endif
;
// This is how we store triangles over the process.
struct triangle
{
// Verts
vtxDcl v[3];
#if __DEV
void VectorMapDraw()
{
CVectorMap::DrawLine(v[0].pos,v[1].pos,Color32(0xff,0x00,0x00),Color32(0xff,0x00,0x00));
CVectorMap::DrawLine(v[2].pos,v[0].pos,Color32(0xff,0x00,0x00),Color32(0xff,0x00,0x00));
CVectorMap::DrawLine(v[1].pos,v[2].pos,Color32(0xff,0x00,0x00),Color32(0xff,0x00,0x00));
}
#endif // __DEV
};
struct quadDcl
{
// Verts
vtxDcl v[4];
#if __DEV
void VectorMapDraw()
{
CVectorMap::DrawLine(v[0].pos,v[1].pos,Color32(0xff,0x00,0x00),Color32(0xff,0x00,0x00));
CVectorMap::DrawLine(v[1].pos,v[2].pos,Color32(0xff,0x00,0x00),Color32(0xff,0x00,0x00));
CVectorMap::DrawLine(v[2].pos,v[3].pos,Color32(0xff,0x00,0x00),Color32(0xff,0x00,0x00));
CVectorMap::DrawLine(v[3].pos,v[0].pos,Color32(0xff,0x00,0x00),Color32(0xff,0x00,0x00));
}
#endif // __DEV
};
spdPlane clipPlanes[6];
static atFixedArray<quadDcl,200> levelQuads;
// Store for triangles being treated,
// Todo: - make sure the code can deal when running out of those, by flushing the current list/rendering and then keep going
// - Reduce size of working sets
typedef atSNode<triangle> linkedTriangle;
static atFixedArray<linkedTriangle,1000> linkedTrianglePool;
// Linked list
static atSList<triangle> lowResTriangle;
static atSList<triangle> highResTriangle;
static float FindDynamicWaterHeight_RT(s32 WorldX, s32 WorldY, Vector3 *pNormal, Color32* pCol, float *pSpeedUp);
//
// Triangle splitting Utilities
//
static bool isQuadVisible(const quadDcl &q, const grcViewport *vp)
{
const int kNumPoints=4;
// Go through each of the points and determine, for each axis individually, whether that point is to
// the outside of the frustum in the positive direction of that axis, whether it is outside of the
// frustum in the negative direction of that axis, or whether it is within the frustum with respect
// to that axis.
int ClipStatus = 0;
Vector3 CameraToVertex;
Vector3 TanVFOV(vp->GetTanVFOV(), vp->GetTanVFOV(), vp->GetTanVFOV());
Vector3 TanHFOV(vp->GetTanHFOV(), vp->GetTanHFOV(), vp->GetTanHFOV());
for(int VertexIndex = 0; VertexIndex < kNumPoints && ClipStatus != 15; ++VertexIndex)
{
CameraToVertex.Subtract(q.v[VertexIndex].pos, vp->GetCameraMtx().d);
Vector3 FrontDistV = -CameraToVertex.DotV(vp->GetCameraMtx().c);
if((ClipStatus & 3) != 3)
{
Vector3 UpDistV = CameraToVertex.DotV(vp->GetCameraMtx().b);
Vector3 AbsUpDistV(UpDistV);
AbsUpDistV.Abs();
if(AbsUpDistV.IsLessThan(TanVFOV * FrontDistV))
{
ClipStatus |= 3;
}
else
{
ClipStatus |= UpDistV.IsGreaterThan(ORIGIN) ? 2 : 1;
}
}
if((ClipStatus & 12) != 12)
{
Vector3 RightDistV = CameraToVertex.DotV(vp->GetCameraMtx().a);
Vector3 AbsRightDistV(RightDistV);
AbsRightDistV.Abs();
if(AbsRightDistV.IsLessThan(TanHFOV * FrontDistV))
{
ClipStatus |= 12;
}
else
{
ClipStatus |= RightDistV.IsGreaterThan(ORIGIN) ? 8 : 4;
}
}
}
return ClipStatus == 15;
}
static __forceinline Vector3 worldTogrid(const Vector3 &world, const float gridStep)
{
Vector3 result;
result.x = (float)((int)((world.x)/gridStep))*gridStep;
result.y = (float)((int)((world.y)/gridStep))*gridStep;
result.z = world.z;
return result;
}
static __forceinline Vector3 worldTogridX(const Vector3 &world, const float gridStep)
{
Vector3 result;
result.x = (float)((int)((world.x)/gridStep))*gridStep;
result.y = world.y;
result.z = world.z;
return result;
}
static __forceinline Vector3 worldTogridY(const Vector3 &world, const float gridStep)
{
Vector3 result;
result.x = world.x;
result.y = (float)((int)((world.y)/gridStep))*gridStep;
result.z = world.z;
return result;
}
static __forceinline void OutputTriangle(const vtxDcl &p1, const vtxDcl &p2, const vtxDcl &p3)
{
linkedTriangle &newTri = linkedTrianglePool.Append();
newTri.Data.v[0] = p1;
newTri.Data.v[1] = p2;
newTri.Data.v[2] = p3;
highResTriangle.Append(newTri);
}
// Look up the values from the rendering loop and push the verts.
// The filtering is a bit stupid and could be more clever, depending on how much tesselation we end up going for.
static void pushVtx(const vtxDcl &vtx)
{
#if 1
float flooredBaseX = Floorf( (vtx.pos.x)*WATERGRIDSIZE_INVF);
float flooredBaseY = Floorf( (vtx.pos.y)*WATERGRIDSIZE_INVF);
s32 baseX = (s32)(WATERGRIDSIZE * flooredBaseX);
s32 baseY = (s32)(WATERGRIDSIZE * flooredBaseY);
Vector3 normal(0.0f,0.0f,1.0f);
Color32 color;
float height = FindDynamicWaterHeight_RT(baseX,baseY,&normal,&color,NULL);
grcVertex(vtx.pos.x,vtx.pos.y,vtx.pos.z + height,normal.x,normal.y,normal.z,color,0.0f,0.0f);
#else
float flooredBaseX1 = Floorf( (vtx.pos.x + 1.0f )*WATERGRIDSIZE_INVF);
float flooredBaseY1 = Floorf( (vtx.pos.y + 0.0f )*WATERGRIDSIZE_INVF);
float flooredBaseX2 = Floorf( (vtx.pos.x - 1.0f )*WATERGRIDSIZE_INVF);
float flooredBaseY2 = Floorf( (vtx.pos.y + 0.0f )*WATERGRIDSIZE_INVF);
float flooredBaseX3 = Floorf( (vtx.pos.x + 0.0f )*WATERGRIDSIZE_INVF);
float flooredBaseY3 = Floorf( (vtx.pos.y + 1.0f )*WATERGRIDSIZE_INVF);
float flooredBaseX4 = Floorf( (vtx.pos.x + 0.0f )*WATERGRIDSIZE_INVF);
float flooredBaseY4 = Floorf( (vtx.pos.y - 1.0f )*WATERGRIDSIZE_INVF);
s32 baseX1 = (s32)(WATERGRIDSIZE * flooredBaseX1);
s32 baseY1 = (s32)(WATERGRIDSIZE * flooredBaseY1);
Vector3 normal1(0.0f,0.0f,1.0f);
Color32 color1;
float height1 = FindDynamicWaterHeight_RT(baseX1,baseY1,&normal1,&color1,NULL);
s32 baseX2 = (s32)(WATERGRIDSIZE * flooredBaseX2);
s32 baseY2 = (s32)(WATERGRIDSIZE * flooredBaseY2);
Vector3 normal2(0.0f,0.0f,1.0f);
Color32 color2;
float height2 = FindDynamicWaterHeight_RT(baseX2,baseY2,&normal2,&color2,NULL);
s32 baseX3 = (s32)(WATERGRIDSIZE * flooredBaseX3);
s32 baseY3 = (s32)(WATERGRIDSIZE * flooredBaseY3);
Vector3 normal3(0.0f,0.0f,1.0f);
Color32 color3;
float height3 = FindDynamicWaterHeight_RT(baseX3,baseY3,&normal3,&color3,NULL);
s32 baseX4 = (s32)(WATERGRIDSIZE * flooredBaseX4);
s32 baseY4 = (s32)(WATERGRIDSIZE * flooredBaseY4);
Vector3 normal4(0.0f,0.0f,1.0f);
Color32 color4;
float height4 = FindDynamicWaterHeight_RT(baseX4,baseY4,&normal4,&color4,NULL);
float height = (height1 + height2 + height3 + height4)/4.0f;
Vector3 normal = (normal1 + normal2 + normal3 + normal4)/4.0f;
Color32 color;
color.SetRed ((color1.GetRed() + color2.GetRed() + color3.GetRed() + color4.GetRed() )/4);
color.SetGreen ((color1.GetGreen() + color2.GetGreen() + color3.GetGreen() + color4.GetGreen() )/4);
color.SetBlue ((color1.GetBlue() + color2.GetBlue() + color3.GetBlue() + color4.GetBlue() )/4);
color.SetAlpha ((color1.GetAlpha() + color2.GetAlpha() + color3.GetAlpha() + color4.GetAlpha() )/4);
grcVertex(vtx.pos.x,vtx.pos.y,vtx.pos.z + height,normal.x,normal.y,normal.z,color,0.0f,0.0f);
#endif
}
//
// Debug Rendering
//
#if __DEV
static void newWaterVectorMapDraw()
{
int triCount = levelQuads.GetCount();
for(int i=0;i<triCount;i++)
{
levelQuads[i].VectorMapDraw();
}
}
#endif // __DEV
// Water initialisation:
//Take the water quad and feed them as triangle down to the levelQuads list.
//
//The triangle orientation/winding order is important, if passed in wrong, the tesselation won't work
//
// Todo:
// Make the levelQuads array dynamically allocated rather than static : we could save space here
// Find a way of importing a drawable/free form mesh layed out by an artist
static void newWaterInit()
{
for (int i = 0; i < m_nNumOfWaterQuads; i++)
{
CWaterQuad &quad = m_aQuads[i];
Vector3 p1(m_aVertices[quad.Index1].m_X,m_aVertices[quad.Index1].m_Y,m_aVertices[quad.Index1].m_Z);
Vector3 p2(m_aVertices[quad.Index1].m_X,m_aVertices[quad.Index3].m_Y,m_aVertices[quad.Index2].m_Z);
Vector3 p3(m_aVertices[quad.Index2].m_X,m_aVertices[quad.Index3].m_Y,m_aVertices[quad.Index4].m_Z);
Vector3 p4(m_aVertices[quad.Index2].m_X,m_aVertices[quad.Index1].m_Y,m_aVertices[quad.Index3].m_Z);
// Tri1 = p1,p2,p3
if( p1 != p2 && p1 != p3 && p2 != p3 && p3 != p4 && p1 != p4)
{
vtxDcl vtx1;
vtx1.pos = p1;
vtxDcl vtx2;
vtx2.pos = p2;
vtxDcl vtx3;
vtx3.pos = p3;
vtxDcl vtx4;
vtx4.pos = p4;
quadDcl &q = levelQuads.Append();
q.v[0] = vtx1;
q.v[1] = vtx2;
q.v[2] = vtx3;
q.v[3] = vtx4;
}
}
for(int i=0;i<levelQuads.GetCount();i++)
{
for(int j=0;j<4;j++)
{
Displayf("%d %d %f %f %f\n",i,j,levelQuads[i].v[j].pos.x,levelQuads[i].v[j].pos.y,levelQuads[i].v[j].pos.z);
}
}
__debugbreak();
}
static bool Intersect(const vtxDcl &ap1, const vtxDcl &ap2, const Vector3 &bp1, const Vector3 &bp2, vtxDcl& intersection)
{
const Vector3 &vap1 = ap1.pos;
const Vector3 &vap2 = ap2.pos;
float denom = ((bp2.y - bp1.y)*(vap2.x - vap1.x)) - ((bp2.x - bp1.x)*(vap2.y - vap1.y));
if(denom == 0.0f)
{
return false;
}
float nume_a = ((bp2.x - bp1.x)*(vap1.y - bp1.y)) - ((bp2.y - bp1.y)*(vap1.x - bp1.x));
float ua = nume_a / denom;
intersection = ap2;
intersection.sub(ap1);
intersection.mul(ua);
intersection.add(ap1);
return true;
}
static void ClipTriangle(const vtxDcl *in, vtxDcl *out, int &vtxCount, float xMin, float xMax, float yMin, float yMax)
{
vtxDcl screenClippedA[8];
int screenClippedCountA = 0;
vtxDcl screenClippedB[8];
int screenClippedCountB = 0;
Vector3 clipLineA;
Vector3 clipLineB;
const vtxDcl *src;
vtxDcl *dst;
s32 srcCount;
s32 dstCount;
s32 i;
// xMin Clipping
clipLineA.Set(xMin,yMin-10.0f,0.0f);
clipLineB.Set(xMin,yMax+10.0f,0.0f);
src = in;
dst = screenClippedA;
srcCount = vtxCount;
dstCount = 0;
for(i = 0;i<srcCount-1;i++)
{
if( src[i].pos.x < xMin )
{
if( src[i+1].pos.x > xMin )
{
Assert(dstCount<8);
bool res = Intersect(src[i],src[i+1],clipLineA,clipLineB,dst[dstCount]);
dstCount = res ? (dstCount + 1) : dstCount;
}
}
else
{
Assert(dstCount<8);
dst[dstCount] = src[i];
dstCount++;
if( src[i+1].pos.x < xMin )
{
Assert(dstCount<8);
bool res = Intersect(src[i],src[i+1],clipLineA,clipLineB,dst[dstCount]);
dstCount = res ? (dstCount + 1) : dstCount;
}
}
}
if( src[i].pos.x < xMin )
{
if( src[0].pos.x > xMin )
{
Assert(dstCount<8);
bool res = Intersect(src[i],src[0],clipLineA,clipLineB,dst[dstCount]);
dstCount = res ? (dstCount + 1) : dstCount;
}
}
else
{
Assert(dstCount<8);
dst[dstCount] = src[i];
dstCount++;
if( src[0].pos.x < xMin )
{
Assert(dstCount<8);
bool res = Intersect(src[i],src[0],clipLineA,clipLineB,dst[dstCount]);
dstCount = res ? (dstCount + 1) : dstCount;
}
}
screenClippedCountA = dstCount;
// yMin Clipping
clipLineA.Set(xMin-10.0f,yMin,0.0f);
clipLineB.Set(xMax+10.0f,yMin,0.0f);
src = screenClippedA;
dst = screenClippedB;
srcCount = screenClippedCountA;
dstCount = 0;
for(i = 0;i<srcCount-1;i++)
{
if( src[i].pos.y < yMin )
{
if( src[i+1].pos.y > yMin )
{
Assert(dstCount<8);
bool res = Intersect(src[i],src[i+1],clipLineA,clipLineB,dst[dstCount]);
dstCount = res ? (dstCount + 1) : dstCount;
}
}
else
{
Assert(dstCount<8);
dst[dstCount] = src[i];
dstCount++;
if( src[i+1].pos.y < yMin )
{
Assert(dstCount<8);
bool res = Intersect(src[i],src[i+1],clipLineA,clipLineB,dst[dstCount]);
dstCount = res ? (dstCount + 1) : dstCount;
}
}
}
if( src[i].pos.y < yMin )
{
if( src[0].pos.y > yMin )
{
Assert(dstCount<8);
bool res = Intersect(src[i],src[0],clipLineA,clipLineB,dst[dstCount]);
dstCount = res ? (dstCount + 1) : dstCount;
}
}
else
{
Assert(dstCount<8);
dst[dstCount] = src[i];
dstCount++;
if( src[0].pos.y < yMin )
{
Assert(dstCount<8);
bool res = Intersect(src[i],src[0],clipLineA,clipLineB,dst[dstCount]);
dstCount = res ? (dstCount + 1) : dstCount;
}
}
screenClippedCountB = dstCount;
// xMax Clipping
clipLineA.Set(xMax,yMin-10.0f,0.0f);
clipLineB.Set(xMax,yMax+10.0f,0.0f);
src = screenClippedB;
dst = screenClippedA;
srcCount = screenClippedCountB;
dstCount = 0;
for(i = 0;i<srcCount-1;i++)
{
if( src[i].pos.x > xMax )
{
if( src[i+1].pos.x < xMax )
{
Assert(dstCount<8);
bool res = Intersect(src[i],src[i+1],clipLineA,clipLineB,dst[dstCount]);
dstCount = res ? (dstCount + 1) : dstCount;
}
}
else
{
Assert(dstCount<8);
dst[dstCount] = src[i];
dstCount++;
if( src[i+1].pos.x > xMax )
{
Assert(dstCount<8);
bool res = Intersect(src[i],src[i+1],clipLineA,clipLineB,dst[dstCount]);
dstCount = res ? (dstCount + 1) : dstCount;
}
}
}
if( src[i].pos.x > xMax )
{
if( src[0].pos.x < xMax )
{
Assert(dstCount<8);
bool res = Intersect(src[i],src[0],clipLineA,clipLineB,dst[dstCount]);
dstCount = res ? (dstCount + 1) : dstCount;
}
}
else
{
Assert(dstCount<8);
dst[dstCount] = src[i];
dstCount++;
if( src[0].pos.x > xMax )
{
Assert(dstCount<8);
bool res = Intersect(src[i],src[0],clipLineA,clipLineB,dst[dstCount]);
dstCount = res ? (dstCount + 1) : dstCount;
}
}
screenClippedCountA = dstCount;
// yMax Clipping
clipLineA.Set(xMin-10.0f,yMax,0.0f);
clipLineB.Set(xMax+10.0f,yMax,0.0f);
src = screenClippedA;
dst = out;
srcCount = screenClippedCountA;
dstCount = 0;
for(i = 0;i<srcCount-1;i++)
{
if( src[i].pos.y > yMax )
{
if( src[i+1].pos.y < yMax )
{
Assert(dstCount<8);
bool res = Intersect(src[i],src[i+1],clipLineA,clipLineB,dst[dstCount]);
dstCount = res ? (dstCount + 1) : dstCount;
}
}
else
{
Assert(dstCount<8);
dst[dstCount] = src[i];
dstCount++;
if( src[i+1].pos.y > yMax )
{
Assert(dstCount<8);
bool res = Intersect(src[i],src[i+1],clipLineA,clipLineB,dst[dstCount]);
dstCount = res ? (dstCount + 1) : dstCount;
}
}
}
if( src[i].pos.y > yMax )
{
if( src[0].pos.y < yMax )
{
Assert(dstCount<8);
bool res = Intersect(src[i],src[0],clipLineA,clipLineB,dst[dstCount]);
dstCount = res ? (dstCount + 1) : dstCount;
}
}
else
{
Assert(dstCount<8);
dst[dstCount] = src[i];
dstCount++;
if( src[0].pos.y > yMax )
{
Assert(dstCount<8);
bool res = Intersect(src[i],src[0],clipLineA,clipLineB,dst[dstCount]);
dstCount = res ? (dstCount + 1) : dstCount;
}
}
vtxCount = dstCount;
}
static void SplitTriangle(const vtxDcl *in, const int inCount, float gridStep, const grcViewport *vp)
{
Vector3 minPos = in[0].pos;
Vector3 maxPos = in[0].pos;
Vector3 center = in[0].pos;
for(int i=0;i<inCount;i++)
{
minPos.Min(minPos,in[i].pos);
maxPos.Max(maxPos,in[i].pos);
center += in[i].pos;
}
center *= 1.0f/(float)inCount;
minPos = worldTogrid(minPos,gridStep);
minPos -= Vector3(gridStep,gridStep,0.0f);
maxPos = worldTogrid(maxPos,gridStep);
maxPos += Vector3(gridStep,gridStep,0.0f);
float x = minPos.x;
int countX = (int)((maxPos.x - minPos.x)/gridStep);
int countY = (int)((maxPos.y - minPos.y)/gridStep);
for(int i=0;i<countX;i++,x+=gridStep)
{
float y = minPos.y;
for(int j=0;j<countY;j++,y+=gridStep)
{
Vector4 sphere(x,y,center.z,gridStep*2.0f);
if( !vp->IsSphereVisible(sphere) )
continue;
Vector3 a = Vector3(x,y,0);
Vector3 b = Vector3(x+gridStep,y+gridStep,0);
vtxDcl out[8];
int vtxCount=inCount;
ClipTriangle(in, out, vtxCount, x, x+gridStep, y, y+gridStep);
if( vtxCount > 2)
{
int k=0;
Color32 col1;
Color32 col2;
int startIdx = 0;
Vector3 startPos = out[0].pos;
for(k=1;k<vtxCount;k++)
{
if( out[k].pos.x < startPos.x)
{
startPos = out[k].pos;
startIdx = k;
}
else if( out[k].pos.x == startPos.x && out[k].pos.y < startPos.y )
{
startPos = out[k].pos;
startIdx = k;
}
}
int idx = startIdx;
vtxDcl aa,bb,cc;
aa = out[idx];
idx = (idx + 1 == vtxCount) ? 0 : (idx+1);
bb = out[idx];
idx = (idx + 1 == vtxCount) ? 0 : (idx+1);
for(k=2;k<vtxCount;k++)
{
cc = out[idx];
idx = (idx + 1 == vtxCount) ? 0 : (idx+1);
OutputTriangle(aa, bb, cc);
bb = cc;
}
}
}
}
}
static void CCWSort(Vector3 *vecIn, int numVrt)
{
Vector3 center;
for(int i=0;i<numVrt;i++)
{
center += vecIn[i];
}
center /= (float)numVrt;
float angles[16];
Vector3 a = center - vecIn[0];
angles[0] = a.AngleZ(a);
for(int i=1;i<numVrt;i++)
{
Vector3 b = center - vecIn[i];
angles[i] = a.AngleZ(b);
}
int i,j;
i=1;
j=2;
while (i<=numVrt-1)
{
if( angles[i-1] <= angles[i] )
{
i=j;
j=j+1;
}
else
{
Vector3 tmp = vecIn[i-1];
float tmpA = angles[i-1];
vecIn[i-1] = vecIn[i];
vecIn[i] = tmp;
angles[i-1] = angles[i];
angles[i] = tmpA;
i=i-1;
if (i==0)
i=1;
}
}
}
// Split the level triangles for rendering and clear all lists...
// It outputs two list of triangles : lowResTriangle and highResTriangle.
// lowRes are rendered as is, highRes are tesselated further.
// Todo:
// - There's a few cases where long triangles are returned by the tesselator, those should be split further along the sim grid, probably
// by radding them to workList1Triangle
// - There's a lot of copying of verts and a couple of special cases because the vert order is not maintained in a quad throughout the process, this should be fixed.
// - Potential memory optimization: generate the verts/idx buffer straight out of the function, rather than building two lists to be rendered later on.
// - Inject the end of world/looping triangles as if part of the level set, if done cleverly, we can probably push them straight to the highres triangle list.
static void splitWaterTriangle(const grcViewport *vp, float highLowsplitDistance, float nearClipFactor,float gridStep, bool DEV_ONLY(debugRender))
{
// Reset various lists
linkedTrianglePool.Reset();
lowResTriangle.Reset();
//workList1Triangle.Reset();
highResTriangle.Reset();
int triCount = levelQuads.GetCount();
// Set plane clip out of frutrum
Vector4 scale(-1.0f,-1.0f,-1.0f,1.0f);
for(int i=0;i<6;i++)
{
Vector4 plane = vp->GetFrustumClipPlane(i);
plane *= scale;
clipPlanes[i].SetCoefficientVector(plane);
}
Vector3 planePos;
Vector3 planeNormal;
// Move the following clip plane away.
// Todo : Maybe try using a wider frustum rather than just moving the planes away.
const s32 clipPlanesCode[5] = { grcViewport::CLIP_PLANE_NEAR,
grcViewport::CLIP_PLANE_LEFT,
grcViewport::CLIP_PLANE_RIGHT,
grcViewport::CLIP_PLANE_TOP,
grcViewport::CLIP_PLANE_BOTTOM };
for(int planeId = 0;planeId < 5;planeId++)
{
int planeIndex = clipPlanesCode[planeId];
planePos = clipPlanes[planeIndex].GetPos();
planeNormal = clipPlanes[planeIndex].GetNormal();
planePos += planeNormal*nearClipFactor;
clipPlanes[planeIndex].SetPos(planePos);
}
Vector3 pos = vp->GetCameraMtx().d;
#if __DEV
if( debugRender )
{
CVectorMap::DrawLine(pos,pos + vp->GetCameraMtx().a * highLowsplitDistance,Color32(0xff,0x00,0x00),Color32(0xff,0x00,0x00));
CVectorMap::DrawLine(pos,pos + vp->GetCameraMtx().b * highLowsplitDistance,Color32(0x00,0xff,0x00),Color32(0x00,0xff,0x00));
CVectorMap::DrawLine(pos,pos + vp->GetCameraMtx().c * highLowsplitDistance,Color32(0x00,0x00,0xff),Color32(0x00,0x00,0xff));
}
#endif // __DEV
// First pass over triangles:
// Clip every triangle allong the highlevel distance Plane, putting the one behind in the lowres list and the other one
// in the worklist to be tesselated further
// Todo:
// - Use a single split function to output two polys per triangle fed, rasther than doing two separate splits.
spdPlane clipHighLevelPlane = clipPlanes[grcViewport::CLIP_PLANE_NEAR];
clipHighLevelPlane.SetPos(pos-vp->GetCameraMtx().c * highLowsplitDistance);
spdPlane clipInvHighLevelPlane(clipHighLevelPlane);
clipInvHighLevelPlane.NegateNormal();
for(int i=0;i<triCount;i++)
{
if( isQuadVisible(levelQuads[i],vp) )
{
Vector3 vertsIn[4];
Vector3 vertsOut[8];
vertsIn[0] = levelQuads[i].v[0].pos;
vertsIn[1] = levelQuads[i].v[1].pos;
vertsIn[2] = levelQuads[i].v[2].pos;
vertsIn[3] = levelQuads[i].v[3].pos;
// Split visible triangles : low res are behind the clip plane
int lowResVtxCount = clipHighLevelPlane.Clip(vertsIn, 4, vertsOut, 8);
if( lowResVtxCount )
{
//Vector3 a,b,c;
//
//a = vertsOut[0];
//b = vertsOut[1];
//
//for(int j=2;j<lowResVtxCount;j++)
//{
// c = vertsOut[2];
//
// linkedTriangle &newTri = linkedTrianglePool.Append();
// newTri.Data.v[0].pos = a;
// newTri.Data.v[1].pos = b;
// newTri.Data.v[2].pos = c;
// lowResTriangle.Append(newTri);
//
// b = c;
//}
if( sortQuads )
{
CCWSort(vertsOut,lowResVtxCount);
}
for(int j=0;j<lowResVtxCount-1;j++)
{
CVectorMap::DrawLine(vertsOut[j],vertsOut[j+1],Color32(0x00,0x00,0xff),Color32(0x00,0x00,0xff));
}
CVectorMap::DrawLine(vertsOut[lowResVtxCount-1],vertsOut[0],Color32(0x00,0x00,0xff),Color32(0x00,0x00,0xff));
Vector3 center = vertsOut[0];
for(int i=1;i<lowResVtxCount;i++)
{
center += vertsOut[i];
}
center /= (float)lowResVtxCount;
for(int j=0;j<lowResVtxCount;j++)
{
int color = ((float)j/(float)lowResVtxCount) * 255.0f;
Color32 col(color,color,color);
CVectorMap::DrawLine(center,vertsOut[j],col,col);
}
if( sortQuads && lowResVtxCount > 3)
{
int cntr[1];
int ncontours = 1;
cntr[0] = 4;
double verts[50][2];
int tris[50][3];
for(int j=0;j<lowResVtxCount;j++)
{
verts[j+1][0] = vertsOut[j].x;
verts[j+1][1] = vertsOut[j].y;
}
int triCountRes = triangulate_polygon(ncontours, cntr, verts, tris);
for(int j=0;j<triCountRes;j++)
{
Vector3 a,b,c;
a.x = vert[tris[j][0]].pt.x;
a.y = vert[tris[j][0]].pt.y;
a.z = 0.0f;
b.x = vert[tris[j][1]].pt.x;
b.y = vert[tris[j][1]].pt.y;
b.z = 0.0f;
c.x = vert[tris[j][2]].pt.x;
c.y = vert[tris[j][2]].pt.y;
c.z = 0.0f;
CVectorMap::DrawLine(a,b,Color32(0x00,0x00,0xff),Color32(0x00,0x00,0xff));
CVectorMap::DrawLine(b,c,Color32(0x00,0x00,0xff),Color32(0x00,0x00,0xff));
CVectorMap::DrawLine(c,a,Color32(0x00,0x00,0xff),Color32(0x00,0x00,0xff));
}
}
else
{
CVectorMap::DrawLine(vertsOut[0],vertsOut[1],Color32(0x00,0x00,0xff),Color32(0x00,0x00,0xff));
CVectorMap::DrawLine(vertsOut[1],vertsOut[2],Color32(0x00,0x00,0xff),Color32(0x00,0x00,0xff));
CVectorMap::DrawLine(vertsOut[2],vertsOut[0],Color32(0x00,0x00,0xff),Color32(0x00,0x00,0xff));
}
//if( lowResVtxCount > 3 )
//{
// // The curlies are here to avoid some gcc weirdness where the two tris
// // end up with the same value, it could be me, though.
// {
// }
//
// {
// linkedTriangle &newTri = linkedTrianglePool.Append();
// newTri.Data.v[0].pos = vertsOut[3];
// newTri.Data.v[1].pos = vertsOut[1];
// newTri.Data.v[2].pos = vertsOut[2];
// lowResTriangle.Append(newTri);
// }
//}
//else
//{
// linkedTriangle &newTri = linkedTrianglePool.Append();
// newTri.Data.v[0].pos = vertsOut[0];
// newTri.Data.v[1].pos = vertsOut[1];
// newTri.Data.v[2].pos = vertsOut[2];
// lowResTriangle.Append(newTri);
//}
}
int highResVtxCount = clipInvHighLevelPlane.Clip(vertsIn, 4, vertsOut, 8);
if( highResVtxCount )
{
vtxDcl verts[8];
for(int i=0;i<highResVtxCount;i++)
{
#if USE_FAT_VTXDCL
float color=((float)i/highResVtxCount)*255.0f;
verts[i].col = Vector3(color,color,color);
#endif // USE_FAT_VTXDCL
verts[i].pos = vertsOut[i];
}
SplitTriangle(verts,highResVtxCount,gridStep,vp);
}
}
}
}
// Render...
// Maybe use a separate larger, fixed size vertex buffer and a generated index stream, to reduce the numbers of drawcalls
//
static void newWaterRender()
{
int lowResVtxCount = lowResTriangle.GetNumItems()*3;
if( lowResVtxCount )
{
int batchSize = Min(grcBeginMax3,lowResVtxCount);
int currentBatch = batchSize;
linkedTriangle *tri = lowResTriangle.PopHead();
// Go through lowres triangle and render them as is
// The batching logic is retarded, and can probably be streamlined.
#if __BANK
grcBegin(m_bWireFrame ? drawLineStrip : drawTris,batchSize);
#else // __BANK
grcBegin(drawTris,batchSize);
#endif // __BANK
while(tri)
{
if( 0 == currentBatch )
{
grcEnd();
lowResVtxCount -= batchSize;
batchSize = Min(grcBeginMax3,lowResVtxCount);
currentBatch = batchSize;
#if __BANK
grcBegin(m_bWireFrame ? drawLineStrip : drawTris,batchSize);
#else // __BANK
grcBegin(drawTris,batchSize);
#endif // __BANK
}
#if __DEV
if( debugRender )
{
CVectorMap::DrawLine(tri->Data.v[0].pos,tri->Data.v[1].pos,Color32(0x00,0x00,0xff),Color32(0x00,0x00,0xff));
CVectorMap::DrawLine(tri->Data.v[1].pos,tri->Data.v[2].pos,Color32(0x00,0x00,0xff),Color32(0x00,0x00,0xff));
CVectorMap::DrawLine(tri->Data.v[2].pos,tri->Data.v[0].pos,Color32(0x00,0x00,0xff),Color32(0x00,0x00,0xff));
}
#endif // __DEV
grcVertex(tri->Data.v[0].pos.x,tri->Data.v[0].pos.y,tri->Data.v[0].pos.z,0.0f,0.0f,1.0f,Color32(0.0f, 0.0f, 0.0f, 1.0f),0.0f,0.0f);
grcVertex(tri->Data.v[1].pos.x,tri->Data.v[1].pos.y,tri->Data.v[1].pos.z,0.0f,0.0f,1.0f,Color32(0.0f, 0.0f, 0.0f, 1.0f),0.0f,0.0f);
grcVertex(tri->Data.v[2].pos.x,tri->Data.v[2].pos.y,tri->Data.v[2].pos.z,0.0f,0.0f,1.0f,Color32(0.0f, 0.0f, 0.0f, 1.0f),0.0f,0.0f);
currentBatch -= 3;
tri = lowResTriangle.PopHead();
}
grcEnd();
}
// Render highres tris the same way the lowres are
int highResVtxCount = highResTriangle.GetNumItems()*3;
if( highResVtxCount )
{
int batchSize = Min(grcBeginMax3,highResVtxCount);
int currentBatch = batchSize;
linkedTriangle *tri = highResTriangle.PopHead();
#if __BANK
grcBegin(m_bWireFrame ? drawLineStrip : drawTris,batchSize);
#else // __BANK
grcBegin(drawTris,batchSize);
#endif // __BANK
while(tri)
{
if( 0 == currentBatch )
{
grcEnd();
highResVtxCount -= batchSize;
batchSize = Min(grcBeginMax3,highResVtxCount);
currentBatch = batchSize;
#if __BANK
grcBegin(m_bWireFrame ? drawLineStrip : drawTris,batchSize);
#else // __BANK
grcBegin(drawTris,batchSize);
#endif // __BANK
}
#if __DEV
if( debugRender )
{
CVectorMap::DrawLine(tri->Data.v[0].pos,tri->Data.v[1].pos,Color32(0xff,0x00,0x00),Color32(0x00,0xff,0x00));
CVectorMap::DrawLine(tri->Data.v[1].pos,tri->Data.v[2].pos,Color32(0x00,0xff,0x00),Color32(0x00,0x00,0xff));
CVectorMap::DrawLine(tri->Data.v[2].pos,tri->Data.v[0].pos,Color32(0x00,0x00,0xff),Color32(0xff,0x00,0x00));
}
#endif //__DEv
pushVtx(tri->Data.v[0]);
pushVtx(tri->Data.v[1]);
pushVtx(tri->Data.v[2]);
currentBatch -= 3;
tri = highResTriangle.PopHead();
}
grcEnd();
}
}