mirror of
https://github.com/alliedmodders/hl2sdk.git
synced 2025-09-20 12:36:05 +08:00
Update Protobuf and add protos for CS2 (#176)
* Replace protobuf 2.6.1 with 3.21.8 * Update/add protobuf libs * Add CS2 protos * Remove old csgo/dota protos * Add versioned protoc bin * Comment out Valve's `schema` define for now * Use ENetworkDisconnectionReason * Fix-up `offsetof` to avoid errors on some Clang versions
This commit is contained in:

committed by
GitHub

parent
e6dc3f8a40
commit
c5d57c03ee
189
thirdparty/protobuf-3.21.8/benchmarks/util/big_query_utils.py
vendored
Normal file
189
thirdparty/protobuf-3.21.8/benchmarks/util/big_query_utils.py
vendored
Normal file
@ -0,0 +1,189 @@
|
||||
#!/usr/bin/env python2.7
|
||||
|
||||
from __future__ import print_function
|
||||
import argparse
|
||||
import json
|
||||
import uuid
|
||||
import httplib2
|
||||
|
||||
from apiclient import discovery
|
||||
from apiclient.errors import HttpError
|
||||
from oauth2client.client import GoogleCredentials
|
||||
|
||||
# 30 days in milliseconds
|
||||
_EXPIRATION_MS = 30 * 24 * 60 * 60 * 1000
|
||||
NUM_RETRIES = 3
|
||||
|
||||
|
||||
def create_big_query():
|
||||
"""Authenticates with cloud platform and gets a BiqQuery service object
|
||||
"""
|
||||
creds = GoogleCredentials.get_application_default()
|
||||
return discovery.build(
|
||||
'bigquery', 'v2', credentials=creds, cache_discovery=False)
|
||||
|
||||
|
||||
def create_dataset(biq_query, project_id, dataset_id):
|
||||
is_success = True
|
||||
body = {
|
||||
'datasetReference': {
|
||||
'projectId': project_id,
|
||||
'datasetId': dataset_id
|
||||
}
|
||||
}
|
||||
|
||||
try:
|
||||
dataset_req = biq_query.datasets().insert(
|
||||
projectId=project_id, body=body)
|
||||
dataset_req.execute(num_retries=NUM_RETRIES)
|
||||
except HttpError as http_error:
|
||||
if http_error.resp.status == 409:
|
||||
print('Warning: The dataset %s already exists' % dataset_id)
|
||||
else:
|
||||
# Note: For more debugging info, print "http_error.content"
|
||||
print('Error in creating dataset: %s. Err: %s' % (dataset_id,
|
||||
http_error))
|
||||
is_success = False
|
||||
return is_success
|
||||
|
||||
|
||||
def create_table(big_query, project_id, dataset_id, table_id, table_schema,
|
||||
description):
|
||||
fields = [{
|
||||
'name': field_name,
|
||||
'type': field_type,
|
||||
'description': field_description
|
||||
} for (field_name, field_type, field_description) in table_schema]
|
||||
return create_table2(big_query, project_id, dataset_id, table_id, fields,
|
||||
description)
|
||||
|
||||
|
||||
def create_partitioned_table(big_query,
|
||||
project_id,
|
||||
dataset_id,
|
||||
table_id,
|
||||
table_schema,
|
||||
description,
|
||||
partition_type='DAY',
|
||||
expiration_ms=_EXPIRATION_MS):
|
||||
"""Creates a partitioned table. By default, a date-paritioned table is created with
|
||||
each partition lasting 30 days after it was last modified.
|
||||
"""
|
||||
fields = [{
|
||||
'name': field_name,
|
||||
'type': field_type,
|
||||
'description': field_description
|
||||
} for (field_name, field_type, field_description) in table_schema]
|
||||
return create_table2(big_query, project_id, dataset_id, table_id, fields,
|
||||
description, partition_type, expiration_ms)
|
||||
|
||||
|
||||
def create_table2(big_query,
|
||||
project_id,
|
||||
dataset_id,
|
||||
table_id,
|
||||
fields_schema,
|
||||
description,
|
||||
partition_type=None,
|
||||
expiration_ms=None):
|
||||
is_success = True
|
||||
|
||||
body = {
|
||||
'description': description,
|
||||
'schema': {
|
||||
'fields': fields_schema
|
||||
},
|
||||
'tableReference': {
|
||||
'datasetId': dataset_id,
|
||||
'projectId': project_id,
|
||||
'tableId': table_id
|
||||
}
|
||||
}
|
||||
|
||||
if partition_type and expiration_ms:
|
||||
body["timePartitioning"] = {
|
||||
"type": partition_type,
|
||||
"expirationMs": expiration_ms
|
||||
}
|
||||
|
||||
try:
|
||||
table_req = big_query.tables().insert(
|
||||
projectId=project_id, datasetId=dataset_id, body=body)
|
||||
res = table_req.execute(num_retries=NUM_RETRIES)
|
||||
print('Successfully created %s "%s"' % (res['kind'], res['id']))
|
||||
except HttpError as http_error:
|
||||
if http_error.resp.status == 409:
|
||||
print('Warning: Table %s already exists' % table_id)
|
||||
else:
|
||||
print('Error in creating table: %s. Err: %s' % (table_id,
|
||||
http_error))
|
||||
is_success = False
|
||||
return is_success
|
||||
|
||||
|
||||
def patch_table(big_query, project_id, dataset_id, table_id, fields_schema):
|
||||
is_success = True
|
||||
|
||||
body = {
|
||||
'schema': {
|
||||
'fields': fields_schema
|
||||
},
|
||||
'tableReference': {
|
||||
'datasetId': dataset_id,
|
||||
'projectId': project_id,
|
||||
'tableId': table_id
|
||||
}
|
||||
}
|
||||
|
||||
try:
|
||||
table_req = big_query.tables().patch(
|
||||
projectId=project_id,
|
||||
datasetId=dataset_id,
|
||||
tableId=table_id,
|
||||
body=body)
|
||||
res = table_req.execute(num_retries=NUM_RETRIES)
|
||||
print('Successfully patched %s "%s"' % (res['kind'], res['id']))
|
||||
except HttpError as http_error:
|
||||
print('Error in creating table: %s. Err: %s' % (table_id, http_error))
|
||||
is_success = False
|
||||
return is_success
|
||||
|
||||
|
||||
def insert_rows(big_query, project_id, dataset_id, table_id, rows_list):
|
||||
is_success = True
|
||||
body = {'rows': rows_list}
|
||||
try:
|
||||
insert_req = big_query.tabledata().insertAll(
|
||||
projectId=project_id,
|
||||
datasetId=dataset_id,
|
||||
tableId=table_id,
|
||||
body=body)
|
||||
res = insert_req.execute(num_retries=NUM_RETRIES)
|
||||
if res.get('insertErrors', None):
|
||||
print('Error inserting rows! Response: %s' % res)
|
||||
is_success = False
|
||||
except HttpError as http_error:
|
||||
print('Error inserting rows to the table %s' % table_id)
|
||||
is_success = False
|
||||
|
||||
return is_success
|
||||
|
||||
|
||||
def sync_query_job(big_query, project_id, query, timeout=5000):
|
||||
query_data = {'query': query, 'timeoutMs': timeout}
|
||||
query_job = None
|
||||
try:
|
||||
query_job = big_query.jobs().query(
|
||||
projectId=project_id,
|
||||
body=query_data).execute(num_retries=NUM_RETRIES)
|
||||
except HttpError as http_error:
|
||||
print('Query execute job failed with error: %s' % http_error)
|
||||
print(http_error.content)
|
||||
return query_job
|
||||
|
||||
|
||||
# List of (column name, column type, description) tuples
|
||||
def make_row(unique_row_id, row_values_dict):
|
||||
"""row_values_dict is a dictionary of column name and column value.
|
||||
"""
|
||||
return {'insertId': unique_row_id, 'json': row_values_dict}
|
Reference in New Issue
Block a user