1
0
mirror of https://github.com/alliedmodders/hl2sdk.git synced 2025-09-19 03:56:10 +08:00

First version of the SOurce SDK 2013

This commit is contained in:
Joe Ludwig
2013-06-26 15:22:04 -07:00
commit e7d6f4c174
3682 changed files with 1624327 additions and 0 deletions

View File

@ -0,0 +1,20 @@
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//
//=============================================================================//
// A set of collision rules
// NOTE: Defaults to all indices disabled
class IPhysicsCollisionSet
{
public:
~IPhysicsCollisionSet() {}
virtual void EnableCollisions( int index0, int index1 ) = 0;
virtual void DisableCollisions( int index0, int index1 ) = 0;
virtual bool ShouldCollide( int index0, int index1 ) = 0;
};

View File

@ -0,0 +1,345 @@
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//=============================================================================//
#ifndef CONSTRAINTS_H
#define CONSTRAINTS_H
#ifdef _WIN32
#pragma once
#endif
#include "vphysics_interface.h"
#include "mathlib/mathlib.h"
// constraint groups
struct constraint_groupparams_t
{
int additionalIterations; // additional solver iterations make the constraint system more stable
int minErrorTicks; // minimum number of ticks with an error before it's reported
float errorTolerance; // error tolerance in HL units
inline void Defaults()
{
additionalIterations = 0;
minErrorTicks = 15;
errorTolerance = 3.0f;
}
};
// Breakable constraints;
//
// forceLimit - kg * in / s limit (N * conversion(in/m))
// torqueLimit - kg * in^2 / s (Nm * conversion(in^2/m^2))
//
// strength 0 - 1
struct constraint_breakableparams_t
{
float strength; // strength of the constraint 0.0 - 1.0
float forceLimit; // constraint force limit to break (0 means never break)
float torqueLimit; // constraint torque limit to break (0 means never break)
float bodyMassScale[2]; // scale applied to mass of reference/attached object before solving constriant
bool isActive;
inline void Defaults()
{
forceLimit = 0.0f;
torqueLimit = 0.0f;
strength = 1.0f;
bodyMassScale[0] = 1.0f;
bodyMassScale[1] = 1.0f;
isActive = true;
}
};
//-----------------------------------------------------------------------------
// Purpose: constraint limit on a single rotation axis
//-----------------------------------------------------------------------------
struct constraint_axislimit_t
{
float minRotation;
float maxRotation;
float angularVelocity; // desired angular velocity around hinge
float torque; // torque to achieve angular velocity (use 0, torque for "friction")
inline void SetAxisFriction( float rmin, float rmax, float friction )
{
minRotation = rmin;
maxRotation = rmax;
angularVelocity = 0;
torque = friction;
}
inline void Defaults()
{
SetAxisFriction(0,0,0);
}
};
// Builds a transform which maps points in the input object's local space
// to the output object's local space
inline void BuildObjectRelativeXform( IPhysicsObject *pOutputSpace, IPhysicsObject *pInputSpace, matrix3x4_t &xformInToOut )
{
matrix3x4_t outInv, tmp, input;
pOutputSpace->GetPositionMatrix( &tmp );
MatrixInvert( tmp, outInv );
pInputSpace->GetPositionMatrix( &input );
ConcatTransforms( outInv, input, xformInToOut );
}
//-----------------------------------------------------------------------------
// Purpose: special limited ballsocket constraint for ragdolls.
// Has axis limits for all 3 axes.
//-----------------------------------------------------------------------------
struct constraint_ragdollparams_t
{
constraint_breakableparams_t constraint;
matrix3x4_t constraintToReference;// xform constraint space to refobject space
matrix3x4_t constraintToAttached; // xform constraint space to attached object space
int parentIndex; // NOTE: only used for parsing. NEED NOT BE SET for create
int childIndex; // NOTE: only used for parsing. NEED NOT BE SET for create
constraint_axislimit_t axes[3];
bool onlyAngularLimits; // only angular limits (not translation as well?)
bool isActive;
bool useClockwiseRotations; // HACKHACK: Did this wrong in version one. Fix in the future.
inline void Defaults()
{
constraint.Defaults();
isActive = true;
SetIdentityMatrix( constraintToReference );
SetIdentityMatrix( constraintToAttached );
parentIndex = -1;
childIndex = -1;
axes[0].Defaults();
axes[1].Defaults();
axes[2].Defaults();
onlyAngularLimits = false;
useClockwiseRotations = false;
}
};
//-----------------------------------------------------------------------------
// Purpose: Used to init a hinge restricting the relative position and orientation
// of two objects to rotation around a single axis
//-----------------------------------------------------------------------------
struct constraint_hingeparams_t
{
Vector worldPosition; // position in world space on the hinge axis
Vector worldAxisDirection; // unit direction vector of the hinge axis in world space
constraint_axislimit_t hingeAxis;
constraint_breakableparams_t constraint;
inline void Defaults()
{
worldPosition.Init();
worldAxisDirection.Init();
hingeAxis.Defaults();
constraint.Defaults();
}
};
struct constraint_limitedhingeparams_t : public constraint_hingeparams_t
{
Vector referencePerpAxisDirection; // unit direction vector vector perpendicular to the hinge axis in world space
Vector attachedPerpAxisDirection; // unit direction vector vector perpendicular to the hinge axis in world space
constraint_limitedhingeparams_t() {}
constraint_limitedhingeparams_t( const constraint_hingeparams_t &hinge )
{
static_cast<constraint_hingeparams_t &>(*this) = hinge;
referencePerpAxisDirection.Init();
attachedPerpAxisDirection.Init();
}
inline void Defaults()
{
this->constraint_hingeparams_t::Defaults();
referencePerpAxisDirection.Init();
attachedPerpAxisDirection.Init();
}
};
//-----------------------------------------------------------------------------
// Purpose: Used to init a constraint that fixes the position and orientation
// of two objects relative to each other (like glue)
//-----------------------------------------------------------------------------
struct constraint_fixedparams_t
{
matrix3x4_t attachedRefXform; // xform attached object space to ref object space
constraint_breakableparams_t constraint;
inline void InitWithCurrentObjectState( IPhysicsObject *pRef, IPhysicsObject *pAttached )
{
BuildObjectRelativeXform( pRef, pAttached, attachedRefXform );
}
inline void Defaults()
{
SetIdentityMatrix( attachedRefXform );
constraint.Defaults();
}
};
//-----------------------------------------------------------------------------
// Purpose: Same parameters as fixed constraint, but torqueLimit has no effect
//-----------------------------------------------------------------------------
struct constraint_ballsocketparams_t
{
Vector constraintPosition[2]; // position of the constraint in each object's space
constraint_breakableparams_t constraint;
inline void Defaults()
{
constraint.Defaults();
constraintPosition[0].Init();
constraintPosition[1].Init();
}
void InitWithCurrentObjectState( IPhysicsObject *pRef, IPhysicsObject *pAttached, const Vector &ballsocketOrigin )
{
pRef->WorldToLocal( &constraintPosition[0], ballsocketOrigin );
pAttached->WorldToLocal( &constraintPosition[1], ballsocketOrigin );
}
};
struct constraint_slidingparams_t
{
matrix3x4_t attachedRefXform; // xform attached object space to ref object space
Vector slideAxisRef; // unit direction vector of the slide axis in ref object space
constraint_breakableparams_t constraint;
// NOTE: if limitMin == limitMax there is NO limit set!
float limitMin; // minimum limit coordinate refAxisDirection space
float limitMax; // maximum limit coordinate refAxisDirection space
float friction; // friction on sliding
float velocity; // desired velocity
inline void Defaults()
{
SetIdentityMatrix( attachedRefXform );
slideAxisRef.Init();
limitMin = limitMax = 0;
friction = 0;
velocity = 0;
constraint.Defaults();
}
inline void SetFriction( float inputFriction )
{
friction = inputFriction;
velocity = 0;
}
inline void SetLinearMotor( float inputVelocity, float maxForce )
{
friction = maxForce;
velocity = inputVelocity;
}
inline void InitWithCurrentObjectState( IPhysicsObject *pRef, IPhysicsObject *pAttached, const Vector &slideDirWorldspace )
{
BuildObjectRelativeXform( pRef, pAttached, attachedRefXform );
matrix3x4_t tmp;
pRef->GetPositionMatrix( &tmp );
VectorIRotate( slideDirWorldspace, tmp, slideAxisRef );
}
};
struct constraint_pulleyparams_t
{
constraint_breakableparams_t constraint;
Vector pulleyPosition[2]; // These are the pulley positions for the reference and attached objects in world space
Vector objectPosition[2]; // local positions of attachments to the ref,att objects
float totalLength; // total rope length (include gearing!)
float gearRatio; // gearing affects attached object ALWAYS
bool isRigid;
inline void Defaults()
{
constraint.Defaults();
totalLength = 1.0;
gearRatio = 1.0;
pulleyPosition[0].Init();
pulleyPosition[1].Init();
objectPosition[0].Init();
objectPosition[1].Init();
isRigid = false;
}
};
struct constraint_lengthparams_t
{
constraint_breakableparams_t constraint;
Vector objectPosition[2]; // These are the positions for the reference and attached objects in local space
float totalLength; // Length of rope/spring/constraint. Distance to maintain
float minLength; // if rigid, objects are not allowed to move closer than totalLength either
void InitWorldspace( IPhysicsObject *pRef, IPhysicsObject *pAttached, const Vector &refPosition, const Vector &attachedPosition, bool rigid = false )
{
pRef->WorldToLocal( &objectPosition[0], refPosition );
pAttached->WorldToLocal( &objectPosition[1], attachedPosition );
totalLength = (refPosition - attachedPosition).Length();
minLength = rigid ? totalLength : 0;
}
inline void Defaults()
{
constraint.Defaults();
objectPosition[0].Init();
objectPosition[1].Init();
totalLength = 1;
minLength = 0;
}
};
class IPhysicsConstraint
{
public:
virtual ~IPhysicsConstraint( void ) {}
// NOTE: Constraints are active when created. You can temporarily enable/disable them with these functions
virtual void Activate( void ) = 0;
virtual void Deactivate( void ) = 0;
// set a pointer to the game object
virtual void SetGameData( void *gameData ) = 0;
// get a pointer to the game object
virtual void *GetGameData( void ) const = 0;
// Get the parent/referenced object
virtual IPhysicsObject *GetReferenceObject( void ) const = 0;
// Get the attached object
virtual IPhysicsObject *GetAttachedObject( void ) const = 0;
virtual void SetLinearMotor( float speed, float maxLinearImpulse ) = 0;
virtual void SetAngularMotor( float rotSpeed, float maxAngularImpulse ) = 0;
virtual void UpdateRagdollTransforms( const matrix3x4_t &constraintToReference, const matrix3x4_t &constraintToAttached ) = 0;
virtual bool GetConstraintTransform( matrix3x4_t *pConstraintToReference, matrix3x4_t *pConstraintToAttached ) const = 0;
virtual bool GetConstraintParams( constraint_breakableparams_t *pParams ) const = 0;
virtual void OutputDebugInfo() = 0;
};
class IPhysicsConstraintGroup
{
public:
virtual ~IPhysicsConstraintGroup( void ) {}
virtual void Activate() = 0;
virtual bool IsInErrorState() = 0;
virtual void ClearErrorState() = 0;
virtual void GetErrorParams( constraint_groupparams_t *pParams ) = 0;
virtual void SetErrorParams( const constraint_groupparams_t &params ) = 0;
virtual void SolvePenetration( IPhysicsObject *pObj0, IPhysicsObject *pObj1 ) = 0;
};
#endif // CONSTRAINTS_H

View File

@ -0,0 +1,51 @@
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
//=============================================================================//
#ifndef FRICTION_H
#define FRICTION_H
#ifdef _WIN32
#pragma once
#endif
// NOTE: This is an iterator for the contact points on an object
// NOTE: This should only be used temporarily. Holding one of these
// NOTE: across collision callbacks or calls into simulation will cause errors!
// NOTE: VPHYSICS may choose to make the data contained within this object invalid
// NOTE: any time simulation is run.
class IPhysicsFrictionSnapshot
{
public:
virtual ~IPhysicsFrictionSnapshot() {}
virtual bool IsValid() = 0;
// Object 0 is this object, Object 1 is the other object
virtual IPhysicsObject *GetObject( int index ) = 0;
virtual int GetMaterial( int index ) = 0;
virtual void GetContactPoint( Vector &out ) = 0;
// points away from source object
virtual void GetSurfaceNormal( Vector &out ) = 0;
virtual float GetNormalForce() = 0;
virtual float GetEnergyAbsorbed() = 0;
// recompute friction (useful if dynamically altering materials/mass)
virtual void RecomputeFriction() = 0;
// clear all friction force at this contact point
virtual void ClearFrictionForce() = 0;
virtual void MarkContactForDelete() = 0;
virtual void DeleteAllMarkedContacts( bool wakeObjects ) = 0;
// Move to the next friction data for this object
virtual void NextFrictionData() = 0;
virtual float GetFrictionCoefficient() = 0;
};
#endif // FRICTION_H

View File

@ -0,0 +1,29 @@
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
//=============================================================================//
#ifndef OBJECT_HASH_H
#define OBJECT_HASH_H
#ifdef _WIN32
#pragma once
#endif
class IPhysicsObjectPairHash
{
public:
virtual ~IPhysicsObjectPairHash() {}
virtual void AddObjectPair( void *pObject0, void *pObject1 ) = 0;
virtual void RemoveObjectPair( void *pObject0, void *pObject1 ) = 0;
virtual bool IsObjectPairInHash( void *pObject0, void *pObject1 ) = 0;
virtual void RemoveAllPairsForObject( void *pObject0 ) = 0;
virtual bool IsObjectInHash( void *pObject0 ) = 0;
// Used to iterate over all pairs an object is part of
virtual int GetPairCountForObject( void *pObject0 ) = 0;
virtual int GetPairListForObject( void *pObject0, int nMaxCount, void **ppObjectList ) = 0;
};
#endif // OBJECT_HASH_H

View File

@ -0,0 +1,44 @@
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
//=============================================================================//
#ifndef PERFORMANCE_H
#define PERFORMANCE_H
#ifdef _WIN32
#pragma once
#endif
// Don't ever change these values, or face all kinds of subtle gameplay changes
const float k_flMaxVelocity = 2000.0f;
const float k_flMaxAngularVelocity = 360.0f * 10.0f;
const float DEFAULT_MIN_FRICTION_MASS = 10.0f;
const float DEFAULT_MAX_FRICTION_MASS = 2500.0f;
struct physics_performanceparams_t
{
int maxCollisionsPerObjectPerTimestep; // object will be frozen after this many collisions (visual hitching vs. CPU cost)
int maxCollisionChecksPerTimestep; // objects may penetrate after this many collision checks (can be extended in AdditionalCollisionChecksThisTick)
float maxVelocity; // limit world space linear velocity to this (in / s)
float maxAngularVelocity; // limit world space angular velocity to this (degrees / s)
float lookAheadTimeObjectsVsWorld; // predict collisions this far (seconds) into the future
float lookAheadTimeObjectsVsObject; // predict collisions this far (seconds) into the future
float minFrictionMass; // min mass for friction solves (constrains dynamic range of mass to improve stability)
float maxFrictionMass; // mas mass for friction solves
void Defaults()
{
maxCollisionsPerObjectPerTimestep = 6;
maxCollisionChecksPerTimestep = 250;
maxVelocity = k_flMaxVelocity;
maxAngularVelocity = k_flMaxAngularVelocity;
lookAheadTimeObjectsVsWorld = 1.0f;
lookAheadTimeObjectsVsObject = 0.5f;
minFrictionMass = DEFAULT_MIN_FRICTION_MASS;
maxFrictionMass = DEFAULT_MAX_FRICTION_MASS;
}
};
#endif // PERFORMANCE_H

View File

@ -0,0 +1,47 @@
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
//=============================================================================//
#ifndef PLAYER_CONTROLLER_H
#define PLAYER_CONTROLLER_H
#ifdef _WIN32
#pragma once
#endif
class IPhysicsPlayerControllerEvent
{
public:
virtual int ShouldMoveTo( IPhysicsObject *pObject, const Vector &position ) = 0;
};
class IPhysicsPlayerController
{
public:
virtual ~IPhysicsPlayerController( void ) {}
virtual void Update( const Vector &position, const Vector &velocity, float secondsToArrival, bool onground, IPhysicsObject *ground ) = 0;
virtual void SetEventHandler( IPhysicsPlayerControllerEvent *handler ) = 0;
virtual bool IsInContact( void ) = 0;
virtual void MaxSpeed( const Vector &maxVelocity ) = 0;
// allows game code to change collision models
virtual void SetObject( IPhysicsObject *pObject ) = 0;
// UNDONE: Refactor this and shadow controllers into a single class/interface through IPhysicsObject
virtual int GetShadowPosition( Vector *position, QAngle *angles ) = 0;
virtual void StepUp( float height ) = 0;
virtual void Jump() = 0;
virtual void GetShadowVelocity( Vector *velocity ) = 0;
virtual IPhysicsObject *GetObject() = 0;
virtual void GetLastImpulse( Vector *pOut ) = 0;
virtual void SetPushMassLimit( float maxPushMass ) = 0;
virtual void SetPushSpeedLimit( float maxPushSpeed ) = 0;
virtual float GetPushMassLimit() = 0;
virtual float GetPushSpeedLimit() = 0;
virtual bool WasFrozen() = 0;
};
#endif // PLAYER_CONTROLLER_H

40
public/vphysics/stats.h Normal file
View File

@ -0,0 +1,40 @@
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
//=============================================================================//
#ifndef STATS_H
#define STATS_H
#ifdef _WIN32
#pragma once
#endif
// internal counters to measure cost of physics simulation
struct physics_stats_t
{
float maxRescueSpeed;
float maxSpeedGain;
int impactSysNum;
int impactCounter;
int impactSumSys;
int impactHardRescueCount;
int impactRescueAfterCount;
int impactDelayedCount;
int impactCollisionChecks;
int impactStaticCount;
double totalEnergyDestroyed;
int collisionPairsTotal;
int collisionPairsCreated;
int collisionPairsDestroyed;
int potentialCollisionsObjectVsObject;
int potentialCollisionsObjectVsWorld;
int frictionEventsProcessed;
};
#endif // STATS_H

250
public/vphysics/vehicles.h Normal file
View File

@ -0,0 +1,250 @@
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//=============================================================================//
#ifndef VEHICLES_H
#define VEHICLES_H
#ifdef _WIN32
#pragma once
#endif
#include "datamap.h"
#define VEHICLE_TYPE_CAR_WHEELS (1<<0)
#define VEHICLE_TYPE_CAR_RAYCAST (1<<1)
#define VEHICLE_TYPE_JETSKI_RAYCAST (1<<2)
#define VEHICLE_TYPE_AIRBOAT_RAYCAST (1<<3)
#define VEHICLE_MAX_AXLE_COUNT 4
#define VEHICLE_MAX_GEAR_COUNT 6
#define VEHICLE_MAX_WHEEL_COUNT (2*VEHICLE_MAX_AXLE_COUNT)
#define VEHICLE_TIRE_NORMAL 0
#define VEHICLE_TIRE_BRAKING 1
#define VEHICLE_TIRE_POWERSLIDE 2
struct vehicle_controlparams_t
{
float throttle;
float steering;
float brake;
float boost;
bool handbrake;
bool handbrakeLeft;
bool handbrakeRight;
bool brakepedal;
bool bHasBrakePedal;
bool bAnalogSteering;
};
struct vehicle_operatingparams_t
{
DECLARE_SIMPLE_DATADESC();
float speed;
float engineRPM;
int gear;
float boostDelay;
int boostTimeLeft;
float skidSpeed;
int skidMaterial;
float steeringAngle;
int wheelsNotInContact;
int wheelsInContact;
bool isTorqueBoosting;
};
// Debug!
#define VEHICLE_DEBUGRENDERDATA_MAX_WHEELS 10
#define VEHICLE_DEBUGRENDERDATA_MAX_AXLES 3
struct vehicle_debugcarsystem_t
{
Vector vecAxlePos[VEHICLE_DEBUGRENDERDATA_MAX_AXLES];
Vector vecWheelPos[VEHICLE_DEBUGRENDERDATA_MAX_WHEELS];
Vector vecWheelRaycasts[VEHICLE_DEBUGRENDERDATA_MAX_WHEELS][2];
Vector vecWheelRaycastImpacts[VEHICLE_DEBUGRENDERDATA_MAX_WHEELS];
};
struct vehicleparams_t;
class IPhysicsVehicleController
{
public:
virtual ~IPhysicsVehicleController() {}
// call this from the game code with the control parameters
virtual void Update( float dt, vehicle_controlparams_t &controls ) = 0;
virtual const vehicle_operatingparams_t &GetOperatingParams() = 0;
virtual const vehicleparams_t &GetVehicleParams() = 0;
virtual vehicleparams_t &GetVehicleParamsForChange() = 0;
virtual float UpdateBooster(float dt) = 0;
virtual int GetWheelCount(void) = 0;
virtual IPhysicsObject *GetWheel(int index) = 0;
virtual bool GetWheelContactPoint( int index, Vector *pContactPoint, int *pSurfaceProps ) = 0;
virtual void SetSpringLength(int wheelIndex, float length) = 0;
virtual void SetWheelFriction(int wheelIndex, float friction) = 0;
virtual void OnVehicleEnter( void ) = 0;
virtual void OnVehicleExit( void ) = 0;
virtual void SetEngineDisabled( bool bDisable ) = 0;
virtual bool IsEngineDisabled( void ) = 0;
// Debug
virtual void GetCarSystemDebugData( vehicle_debugcarsystem_t &debugCarSystem ) = 0;
virtual void VehicleDataReload() = 0;
};
// parameters for the body object control of the vehicle
struct vehicle_bodyparams_t
{
DECLARE_SIMPLE_DATADESC();
Vector massCenterOverride; // leave at vec3_origin for no override
float massOverride; // leave at 0 for no override
float addGravity; // keeps car down
float tiltForce; // keeps car down when not on flat ground
float tiltForceHeight; // where the tilt force pulls relative to center of mass
float counterTorqueFactor;
float keepUprightTorque;
float maxAngularVelocity; // clamp the car angular velocity separately from other objects to keep stable
};
// wheel objects are created by vphysics, these are the parameters for those objects
// NOTE: They are paired, so only one set of parameters is necessary per axle
struct vehicle_wheelparams_t
{
DECLARE_SIMPLE_DATADESC();
float radius;
float mass;
float inertia;
float damping; // usually 0
float rotdamping; // usually 0
float frictionScale; // 1.5 front, 1.8 rear
int materialIndex;
int brakeMaterialIndex;
int skidMaterialIndex;
float springAdditionalLength; // 0 means the spring is at it's rest length
};
struct vehicle_suspensionparams_t
{
DECLARE_SIMPLE_DATADESC();
float springConstant;
float springDamping;
float stabilizerConstant;
float springDampingCompression;
float maxBodyForce;
};
// NOTE: both raytrace and wheel data here because jetski uses both.
struct vehicle_axleparams_t
{
DECLARE_SIMPLE_DATADESC();
Vector offset; // center of this axle in vehicle object space
Vector wheelOffset; // offset to wheel (assume other wheel is symmetric at -wheelOffset) from axle center
Vector raytraceCenterOffset; // offset to center of axle for the raytrace data.
Vector raytraceOffset; // offset to raytrace for non-wheel (some wheeled) vehicles
vehicle_wheelparams_t wheels;
vehicle_suspensionparams_t suspension;
float torqueFactor; // normalized to 1 across all axles
// e.g. 0,1 for rear wheel drive - 0.5,0.5 for 4 wheel drive
float brakeFactor; // normalized to 1 across all axles
};
struct vehicle_steeringparams_t
{
DECLARE_SIMPLE_DATADESC();
float degreesSlow; // angle in degrees of steering at slow speed
float degreesFast; // angle in degrees of steering at fast speed
float degreesBoost; // angle in degrees of steering at fast speed
float steeringRateSlow; // this is the speed the wheels are steered when the vehicle is slow
float steeringRateFast; // this is the speed the wheels are steered when the vehicle is "fast"
float steeringRestRateSlow; // this is the speed at which the wheels move toward their resting state (straight ahead) at slow speed
float steeringRestRateFast; // this is the speed at which the wheels move toward their resting state (straight ahead) at fast speed
float speedSlow; // this is the max speed of "slow"
float speedFast; // this is the min speed of "fast"
float turnThrottleReduceSlow; // this is the amount of throttle reduction to apply at the maximum steering angle
float turnThrottleReduceFast; // this is the amount of throttle reduction to apply at the maximum steering angle
float brakeSteeringRateFactor; // this scales the steering rate when the brake/handbrake is down
float throttleSteeringRestRateFactor; // this scales the steering rest rate when the throttle is down
float powerSlideAccel; // scale of speed to acceleration
float boostSteeringRestRateFactor; // this scales the steering rest rate when boosting
float boostSteeringRateFactor; // this scales the steering rest rate when boosting
float steeringExponent; // this makes the steering response non-linear. The steering function is linear, then raised to this power
bool isSkidAllowed; // true/false skid flag
bool dustCloud; // flag for creating a dustcloud behind vehicle
};
struct vehicle_engineparams_t
{
DECLARE_SIMPLE_DATADESC();
float horsepower;
float maxSpeed;
float maxRevSpeed;
float maxRPM; // redline RPM limit
float axleRatio; // ratio of engine rev to axle rev
float throttleTime; // time to reach full throttle in seconds
// transmission
int gearCount; // gear count - max 10
float gearRatio[VEHICLE_MAX_GEAR_COUNT]; // ratio for each gear
// automatic transmission (simple auto-shifter - switches at fixed RPM limits)
float shiftUpRPM; // max RPMs to switch to a higher gear
float shiftDownRPM; // min RPMs to switch to a lower gear
float boostForce;
float boostDuration;
float boostDelay;
float boostMaxSpeed;
float autobrakeSpeedGain;
float autobrakeSpeedFactor;
bool torqueBoost;
bool isAutoTransmission; // true for auto, false for manual
};
struct vehicleparams_t
{
DECLARE_SIMPLE_DATADESC();
int axleCount;
int wheelsPerAxle;
vehicle_bodyparams_t body;
vehicle_axleparams_t axles[VEHICLE_MAX_AXLE_COUNT];
vehicle_engineparams_t engine;
vehicle_steeringparams_t steering;
};
// Iterator for queries
class CPassengerSeatTransition;
typedef CUtlVector< CPassengerSeatTransition> PassengerSeatAnims_t;
// Seat query types
enum VehicleSeatQuery_e
{
VEHICLE_SEAT_ANY, // Any available seat for our role
VEHICLE_SEAT_NEAREST, // Seat closest to our starting point
};
// Seat anim types for return
enum PassengerSeatAnimType_t
{
PASSENGER_SEAT_ENTRY,
PASSENGER_SEAT_EXIT
};
#define VEHICLE_SEAT_INVALID -1 // An invalid seat
#endif // VEHICLES_H

View File

@ -0,0 +1,46 @@
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
//=============================================================================
#ifndef VIRTUALMESH_H
#define VIRTUALMESH_H
#ifdef _WIN32
#pragma once
#endif
// NOTE: These are fixed length to make it easy to fill these out without memory allocation or storage
const int MAX_VIRTUAL_TRIANGLES = 1024;
struct virtualmeshlist_t
{
Vector *pVerts;
int indexCount;
int triangleCount;
int vertexCount;
int surfacePropsIndex;
byte *pHull;
unsigned short indices[MAX_VIRTUAL_TRIANGLES*3];
};
struct virtualmeshtrianglelist_t
{
int triangleCount;
unsigned short triangleIndices[MAX_VIRTUAL_TRIANGLES*3];
};
class IVirtualMeshEvent
{
public:
virtual void GetVirtualMesh( void *userData, virtualmeshlist_t *pList ) = 0;
virtual void GetWorldspaceBounds( void *userData, Vector *pMins, Vector *pMaxs ) = 0;
virtual void GetTrianglesInSphere( void *userData, const Vector &center, float radius, virtualmeshtrianglelist_t *pList ) = 0;
};
struct virtualmeshparams_t
{
IVirtualMeshEvent *pMeshEventHandler;
void *userData;
bool buildOuterHull;
};
#endif // VIRTUALMESH_H