46 KiB
1. 字符串组合
题目描述
给定三种类型的小球P、Q、R,每种小球的数量分别为np、nq、nr个。现在想讲这些小球排成一条直线,但是不允许相同类型的小球相邻,问有多少种排序方法。 如若np=2,nq=1,nr=1则共有6种排列方式:PQRP、QPRP、PRQP、PRPQ、RPQP以及PQPR。如果无法组合出合适的结果,则输出0.
输入
一行以空格相隔的三个数,分别表示为np、nq、nr。
输出
排列方法的数量。
样例输入
2 1 1
样例输出
6
解题思路
本题采用一种比较直接的方式进行解题,分为如下步骤:
- 求解给定P、Q、R个数的时候的全排列,提供
Python
提供的itertools.permutations
来实现,此时肯定有很多重复。 - 去掉重复的情况,通过
Python
提供的set
来实现。 - 通过遍历找出相邻元素重复的串。
- 求两个集合的差集,即为答案。
import itertools
np, nq, nr = [int(k) for k in raw_input().split(" ")]
count = 0
result = []
for i in itertools.permutations("P"*np + "Q"*nq + "R"*nr,np + nq + nr):
result.append(''.join(i))
result_same = []
for element in list(set(result)):
for j in range(1, len(element)):
if element[j-1] == element[j]:
result_same.append(element)
ret_list = list(set(result)^set(result_same))
print len(ret_list)
2. 整数组合求和
题目描述
小米之家是成人糖果店。里面有很多便宜,好用,好玩的产品。中秋节到了,小米之家想给米粉准备一些固定金额大礼包。对于给定的一个金额,需要判断能不能用 不同种产品(一种产品在礼包最多出现一次)组合出来这个金额。聪明的你来帮帮米家的小伙伴吧。
输入
输入N(N是正整数, N < = 200)
输入N个价格p(正整数, p <= 10000)用单空格分割
输入金额M(M是正整数,M <= 100000)
输出
能组合出来输出1
否则输出0
样例输入
6
99 199 1999 10000 39 1499
10238
样例输出
1
解题思路
本题采用一种比较直接的方式进行解题,分为如下步骤:
- 对输入np进行排序,方便后面快速结束。
- 求解给定np时候的0~n个组合的和,提供
Python
提供的itertools.permutations
来实现。 - 如果较小的数相加已经大于目标,可以提前跳出本次循环。
import itertools
n = int(raw_input())
np = [int(k) for k in raw_input().split(" ")]
np.sort()
sum_np = int(raw_input())
flag = 0
for i in range(n):
for j in itertools.permutations(np, i):
if sum(j) > sum_np:
continue;
if sum(j) == sum_np:
flag = 1;
break;
print flag
3. 数组中重复的数字
题目描述
在一个长度为 n 的数组里的所有数字都在 0 到 n-1 的范围内。数组中某些数字是重复的,但不知道有几个数字是重复的,也不知道每个数字重复几次。请找出数组中任意一个重复的数字。例如,如果输入长度为 7 的数组 {2, 3, 1, 0, 2, 5},那么对应的输出是第一个重复的数字 2。
要求复杂度为 O(N) + O(1),也就是时间复杂度 O(N),空间复杂度 O(1)。因此不能使用排序的方法,也不能使用额外的标记数组。牛客网讨论区这一题的首票答案使用 nums[i] + length 来将元素标记,这么做会有加法溢出问题。
解题思路
这种数组元素在 [0, n-1] 范围内的问题,可以将值为 i 的元素放到第 i 个位置上。
以 (2, 3, 1, 0, 2, 5) 为例:
position-0 : (2,3,1,0,2,5) // 2 <-> 1
(1,3,2,0,2,5) // 1 <-> 3
(3,1,2,0,2,5) // 3 <-> 0
(0,1,2,3,2,5) // already in position
position-1 : (0,1,2,3,2,5) // already in position
position-2 : (0,1,2,3,2,5) // already in position
position-3 : (0,1,2,3,2,5) // already in position
position-4 : (0,1,2,3,2,5) // nums[i] == nums[nums[i]], exit
遍历到位置 4 时,该位置上的数为 2,但是第 2 个位置上已经有一个 2 的值了,因此可以知道 2 重复。
public boolean duplicate(int[] nums, int length, int[] duplication) {
if (nums == null || length <= 0)
return false;
for (int i = 0; i < length; i++) {
while (nums[i] != i) {
if (nums[i] == nums[nums[i]]) {
duplication[0] = nums[i];
return true;
}
swap(nums, i, nums[i]);
}
}
return false;
}
private void swap(int[] nums, int i, int j) {
int t = nums[i]; nums[i] = nums[j]; nums[j] = t;
}
nums = [int(k) for k in raw_input().split(" ")]
print nums
def duplicate(nums):
if len(nums) <= 0:
return -1, False
for i in range(len(nums)):
while nums[i] != i:
if nums[i] == nums[nums[i]]:
return nums[i], True
index = nums[i]
nums[i], nums[index] = nums[index], nums[i]
# nums[i], nums[nums[i]] = nums[nums[i]], nums[i]
return -1, False
print duplicate(nums)
4. 二维数组中的查找
题目描述
在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。
Consider the following matrix:
[
[1, 4, 7, 11, 15],
[2, 5, 8, 12, 19],
[3, 6, 9, 16, 22],
[10, 13, 14, 17, 24],
[18, 21, 23, 26, 30]
]
Given target = 5, return true.
Given target = 20, return false.
解题思路
从右上角开始查找。矩阵中的一个数,它左边的数都比它小,下边的数都比它大。因此,从右上角开始查找,就可以根据 target 和当前元素的大小关系来缩小查找区间。
复杂度:O(M + N) + O(1)
当前元素的查找区间为左下角的所有元素,例如元素 12 的查找区间如下:
public boolean Find(int target, int[][] matrix) {
if (matrix == null || matrix.length == 0 || matrix[0].length == 0)
return false;
int rows = matrix.length, cols = matrix[0].length;
int r = 0, c = cols - 1; // 从右上角开始
while (r <= rows - 1 && c >= 0) {
if (target == matrix[r][c])
return true;
else if (target > matrix[r][c])
r++;
else
c--;
}
return false;
}
target = int(input())
# nums = [[1, 4, 7, 11, 15], [2, 5, 8, 12, 19], [3, 6, 9, 16, 22], [10, 13, 14, 17, 24], [18, 21, 23, 26, 30]]
nums = eval(input())
def find(target, matrix):
if len(matrix) == 0 or len(matrix[0]) == 0:
return False
rows, cols = len(matrix), len(matrix[0])
r, c = 0, cols - 1
while r <= rows - 1 and c >= 0:
if target == matrix[r][c]:
return True
elif target > matrix[r][c]:
r += 1
else:
c -= 1
return False
print (find(target, nums))
5. 替换空格
题目描述
将一个字符串中的空格替换成 "%20"。
Input:
"We Are Happy"
Output:
"We%20Are%20Happy"
解题思路
在字符串尾部填充任意字符,使得字符串的长度等于替换之后的长度。因为一个空格要替换成三个字符(%20),因此当遍历到一个空格时,需要在尾部填充两个任意字符。
令 P1 指向字符串原来的末尾位置,P2 指向字符串现在的末尾位置。P1 和 P2从后向前遍历,当 P1 遍历到一个空格时,就需要令 P2 指向的位置依次填充 02%(注意是逆序的),否则就填充上 P1 指向字符的值。
从后向前遍是为了在改变 P2 所指向的内容时,不会影响到 P1 遍历原来字符串的内容。
public String replaceSpace(StringBuffer str) {
int P1 = str.length() - 1;
for (int i = 0; i < P1 + 1; i++)
if (str.charAt(i) == ' ')
str.append(" ");
int P2 = str.length() - 1;
while (P1 >= 0 && P2 > P1) {
char c = str.charAt(P1--);
if (c == ' ') {
str.setCharAt(P2--, '0');
str.setCharAt(P2--, '2');
str.setCharAt(P2--, '%');
} else {
str.setCharAt(P2--, c);
}
}
return str.toString();
}
target = input()
print (target.replace(" ", "%20"))
6. 从尾到头打印链表
题目描述
输入链表的第一个节点,从尾到头反过来打印出每个结点的值。
解题思路
使用栈
public ArrayList<Integer> printListFromTailToHead(ListNode listNode) {
Stack<Integer> stack = new Stack<>();
while (listNode != null) {
stack.add(listNode.val);
listNode = listNode.next;
}
ArrayList<Integer> ret = new ArrayList<>();
while (!stack.isEmpty())
ret.add(stack.pop());
return ret;
}
使用递归
public ArrayList<Integer> printListFromTailToHead(ListNode listNode) {
ArrayList<Integer> ret = new ArrayList<>();
if (listNode != null) {
ret.addAll(printListFromTailToHead(listNode.next));
ret.add(listNode.val);
}
return ret;
}
使用头插法
利用链表头插法为逆序的特点。
头结点和第一个节点的区别:
- 头结点是在头插法中使用的一个额外节点,这个节点不存储值;
- 第一个节点就是链表的第一个真正存储值的节点。
public ArrayList<Integer> printListFromTailToHead(ListNode listNode) {
// 头插法构建逆序链表
ListNode head = new ListNode(-1);
while (listNode != null) {
ListNode memo = listNode.next;
listNode.next = head.next;
head.next = listNode;
listNode = memo;
}
// 构建 ArrayList
ArrayList<Integer> ret = new ArrayList<>();
head = head.next;
while (head != null) {
ret.add(head.val);
head = head.next;
}
return ret;
}
使用 Collections.reverse()
public ArrayList<Integer> printListFromTailToHead(ListNode listNode) {
ArrayList<Integer> ret = new ArrayList<>();
while (listNode != null) {
ret.add(listNode.val);
listNode = listNode.next;
}
Collections.reverse(ret);
return ret;
}
def printListFromTailToHead(listNode):
# write code here
l = list()
while listNode:
l.append(listNode.val)
listNode = listNode.next
l.reverse()
return l
7. 重建二叉树
题目描述
根据二叉树的前序遍历和中序遍历的结果,重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。
preorder = [3,9,20,15,7]
inorder = [9,3,15,20,7]
解题思路
前序遍历的第一个值为根节点的值,使用这个值将中序遍历结果分成两部分,左部分为树的左子树中序遍历结果,右部分为树的右子树中序遍历的结果。
// 缓存中序遍历数组每个值对应的索引
private Map<Integer, Integer> indexForInOrders = new HashMap<>();
public TreeNode reConstructBinaryTree(int[] pre, int[] in) {
for (int i = 0; i < in.length; i++)
indexForInOrders.put(in[i], i);
return reConstructBinaryTree(pre, 0, pre.length - 1, 0);
}
private TreeNode reConstructBinaryTree(int[] pre, int preL, int preR, int inL) {
if (preL > preR)
return null;
TreeNode root = new TreeNode(pre[preL]);
int inIndex = indexForInOrders.get(root.val);
int leftTreeSize = inIndex - inL;
root.left = reConstructBinaryTree(pre, preL + 1, preL + leftTreeSize, inL);
root.right = reConstructBinaryTree(pre, preL + leftTreeSize + 1, preR, inL + leftTreeSize + 1);
return root;
}
# 返回构造的TreeNode根节点
def reConstructBinaryTree(self, pre, tin):
# write code here
if not pre or not tin:
return None
root = TreeNode(pre.pop(0))
index = tin.index(root.val)
root.left = self.reConstructBinaryTree(pre, tin[:index])
root.right = self.reConstructBinaryTree(pre, tin[index + 1:])
return root
8. 二叉树的下一个结点
题目描述
给定一个二叉树和其中的一个结点,请找出中序遍历顺序的下一个结点并且返回。注意,树中的结点不仅包含左右子结点,同时包含指向父结点的指针。
public class TreeLinkNode {
int val;
TreeLinkNode left = null;
TreeLinkNode right = null;
TreeLinkNode next = null;
TreeLinkNode(int val) {
this.val = val;
}
}
解题思路
① 如果一个节点的右子树不为空,那么该节点的下一个节点是右子树的最左节点;
② 否则,向上找第一个左链接指向的树包含该节点的祖先节点。
public TreeLinkNode GetNext(TreeLinkNode pNode) {
if (pNode.right != null) {
TreeLinkNode node = pNode.right;
while (node.left != null)
node = node.left;
return node;
} else {
while (pNode.next != null) {
TreeLinkNode parent = pNode.next;
if (parent.left == pNode)
return parent;
pNode = pNode.next;
}
}
return null;
}
def GetNext(self, pNode):
# write code here
# pNode is None
if not pNode:
return pNode
if pNode.right:
node = pNode.right
while node.left:
node = node.left
return node
else:
while pNode.next:
parent = pNode.next
if parent.left == pNode:
return parent
pNode = pNode.next
# pNode not have the next node
return None
9. 用两个栈实现队列
题目描述
用两个栈来实现一个队列,完成队列的 Push 和 Pop 操作。
解题思路
in 栈用来处理入栈(push)操作,out 栈用来处理出栈(pop)操作。一个元素进入 in 栈之后,出栈的顺序被反转。当元素要出栈时,需要先进入 out 栈,此时元素出栈顺序再一次被反转,因此出栈顺序就和最开始入栈顺序是相同的,先进入的元素先退出,这就是队列的顺序。
Stack<Integer> in = new Stack<Integer>();
Stack<Integer> out = new Stack<Integer>();
public void push(int node) {
in.push(node);
}
public int pop() throws Exception {
if (out.isEmpty())
while (!in.isEmpty())
out.push(in.pop());
if (out.isEmpty())
throw new Exception("queue is empty");
return out.pop();
}
# -*- coding:utf-8 -*-
class Solution:
def __init__(self):
self.stack1 = []
self.stack2 = []
def push(self, node):
# write code here
self.stack1.append(node)
def pop(self):
# return xx
if self.stack2 == []:
while self.stack1:
self.stack2.append(self.stack1.pop())
return self.stack2.pop()
return self.stack2.pop()
10.1 斐波那契数列
题目描述
求斐波那契数列的第 n 项,n <= 39。
解题思路
如果使用递归求解,会重复计算一些子问题。例如,计算 f(10) 需要计算 f(9) 和 f(8),计算 f(9) 需要计算 f(8) 和 f(7),可以看到 f(8) 被重复计算了。
递归是将一个问题划分成多个子问题求解,动态规划也是如此,但是动态规划会把子问题的解缓存起来,从而避免重复求解子问题。
public int Fibonacci(int n) {
if (n <= 1)
return n;
int[] fib = new int[n + 1];
fib[1] = 1;
for (int i = 2; i <= n; i++)
fib[i] = fib[i - 1] + fib[i - 2];
return fib[n];
}
考虑到第 i 项只与第 i-1 和第 i-2 项有关,因此只需要存储前两项的值就能求解第 i 项,从而将空间复杂度由 O(N) 降低为 O(1)。
public int Fibonacci(int n) {
if (n <= 1)
return n;
int pre2 = 0, pre1 = 1;
int fib = 0;
for (int i = 2; i <= n; i++) {
fib = pre2 + pre1;
pre2 = pre1;
pre1 = fib;
}
return fib;
}
由于待求解的 n 小于 40,因此可以将前 40 项的结果先进行计算,之后就能以 O(1) 时间复杂度得到第 n 项的值了。
public class Solution {
private int[] fib = new int[40];
public Solution() {
fib[1] = 1;
fib[2] = 2;
for (int i = 2; i < fib.length; i++)
fib[i] = fib[i - 1] + fib[i - 2];
}
public int Fibonacci(int n) {
return fib[n];
}
}
# -*- coding:utf-8 -*-
class Solution:
def __init__(self):
self.fib = [0,1]
for i in range(2,40):
self.fib.append(self.fib[i-1]+self.fib[i-2])
def Fibonacci(self, n):
# write code here
return self.fib[n]
10.2 跳台阶
题目描述
一只青蛙一次可以跳上 1 级台阶,也可以跳上 2 级。求该青蛙跳上一个 n 级的台阶总共有多少种跳法。
解题思路
public int JumpFloor(int n) {
if (n <= 2)
return n;
int pre2 = 1, pre1 = 2;
int result = 1;
for (int i = 2; i < n; i++) {
result = pre2 + pre1;
pre2 = pre1;
pre1 = result;
}
return result;
}
# -*- coding:utf-8 -*-
class Solution:
def jumpFloor(self, number):
# write code here
if number == 0:
return number
pre1, pre2 = 1, 1
#result = 0
for i in range(number):
pre1, pre2 = pre2, pre1+pre2
return pre1
10.3 矩形覆盖
题目描述
我们可以用 2*1 的小矩形横着或者竖着去覆盖更大的矩形。请问用 n 个 2*1 的小矩形无重叠地覆盖一个 2*n 的大矩形,总共有多少种方法?
解题思路
public int RectCover(int n) {
if (n <= 2)
return n;
int pre2 = 1, pre1 = 2;
int result = 0;
for (int i = 3; i <= n; i++) {
result = pre2 + pre1;
pre2 = pre1;
pre1 = result;
}
return result;
}
# -*- coding:utf-8 -*-
class Solution:
def rectCover(self, number):
# write code here
if number == 0:
return number
pre1, pre2 = 1, 1
#result = 0
for i in range(number):
pre1, pre2 = pre2, pre1+pre2
return pre1
10.4 变态跳台阶
题目描述
一只青蛙一次可以跳上 1 级台阶,也可以跳上 2 级... 它也可以跳上 n 级。求该青蛙跳上一个 n 级的台阶总共有多少种跳法。
解题思路
public int JumpFloorII(int target) {
int[] dp = new int[target];
Arrays.fill(dp, 1);
for (int i = 1; i < target; i++)
for (int j = 0; j < i; j++)
dp[i] += dp[j];
return dp[target - 1];
}
# -*- coding:utf-8 -*-
class Solution:
def jumpFloorII(self, number):
# write code here
if number <= 0:
return 0
return pow(2, number-1)
11. 旋转数组的最小数字
题目描述
把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个非递减排序的数组的一个旋转,输出旋转数组的最小元素。
例如数组 {3, 4, 5, 1, 2} 为 {1, 2, 3, 4, 5} 的一个旋转,该数组的最小值为 1。
解题思路
在一个有序数组中查找一个元素可以用二分查找,二分查找也称为折半查找,每次都能将查找区间减半,这种折半特性的算法时间复杂度都为 O(logN)。
本题可以修改二分查找算法进行求解:
- 当 nums[m] <= nums[h] 的情况下,说明解在 [l, m] 之间,此时令 h = m;
- 否则解在 [m + 1, h] 之间,令 l = m + 1。
public int minNumberInRotateArray(int[] nums) {
if (nums.length == 0)
return 0;
int l = 0, h = nums.length - 1;
while (l < h) {
int m = l + (h - l) / 2;
if (nums[m] <= nums[h])
h = m;
else
l = m + 1;
}
return nums[l];
}
如果数组元素允许重复的话,那么就会出现一个特殊的情况:nums[l] == nums[m] == nums[h],那么此时无法确定解在哪个区间,需要切换到顺序查找。例如对于数组 {1,1,1,0,1},l、m 和 h 指向的数都为 1,此时无法知道最小数字 0 在哪个区间。
public int minNumberInRotateArray(int[] nums) {
if (nums.length == 0)
return 0;
int l = 0, h = nums.length - 1;
while (l < h) {
int m = l + (h - l) / 2;
if (nums[l] == nums[m] && nums[m] == nums[h])
return minNumber(nums, l, h);
else if (nums[m] <= nums[h])
h = m;
else
l = m + 1;
}
return nums[l];
}
private int minNumber(int[] nums, int l, int h) {
for (int i = l; i < h; i++)
if (nums[i] > nums[i + 1])
return nums[i + 1];
return nums[l];
}
# -*- coding:utf-8 -*-
class Solution:
def minNumberInRotateArray(self, rotateArray):
# write code here
if len(rotateArray) == 0:
return 0
return min(rotateArray)
12. 矩阵中的路径
题目描述
请设计一个函数,用来判断在一个矩阵中是否存在一条包含某字符串所有字符的路径。路径可以从矩阵中的任意一个格子开始,每一步可以在矩阵中向左,向右,向上,向下移动一个格子。如果一条路径经过了矩阵中的某一个格子,则该路径不能再进入该格子。
例如下面的矩阵包含了一条 bfce 路径。
解题思路
private final static int[][] next = {{0, -1}, {0, 1}, {-1, 0}, {1, 0}};
private int rows;
private int cols;
public boolean hasPath(char[] array, int rows, int cols, char[] str) {
if (rows == 0 || cols == 0)
return false;
this.rows = rows;
this.cols = cols;
boolean[][] marked = new boolean[rows][cols];
char[][] matrix = buildMatrix(array);
for (int i = 0; i < rows; i++)
for (int j = 0; j < cols; j++)
if (backtracking(matrix, str, marked, 0, i, j))
return true;
return false;
}
private boolean backtracking(char[][] matrix, char[] str, boolean[][] marked, int pathLen, int r, int c) {
if (pathLen == str.length)
return true;
if (r < 0 || r >= rows || c < 0 || c >= cols || matrix[r][c] != str[pathLen] || marked[r][c])
return false;
marked[r][c] = true;
for (int[] n : next)
if (backtracking(matrix, str, marked, pathLen + 1, r + n[0], c + n[1]))
return true;
marked[r][c] = false;
return false;
}
private char[][] buildMatrix(char[] array) {
char[][] matrix = new char[rows][cols];
for (int i = 0, idx = 0; i < rows; i++)
for (int j = 0; j < cols; j++)
matrix[i][j] = array[idx++];
return matrix;
}
# -*- coding:utf-8 -*-
class Solution:
def hasPath(self, matrix, rows, cols, path):
# write code here
for i in range(rows):
for j in range(cols):
if matrix[i*cols+j] == path[0]:
if self.find(list(matrix),rows,cols,path[1:],i,j):
return True
return False
def find(self,matrix,rows,cols,path,i,j):
if not path:
return True
matrix[i*cols+j]='0'
if j+1<cols and matrix[i*cols+j+1]==path[0]:
return self.find(matrix,rows,cols,path[1:],i,j+1)
elif j-1>=0 and matrix[i*cols+j-1]==path[0]:
return self.find(matrix,rows,cols,path[1:],i,j-1)
elif i+1<rows and matrix[(i+1)*cols+j]==path[0]:
return self.find(matrix,rows,cols,path[1:],i+1,j)
elif i-1>=0 and matrix[(i-1)*cols+j]==path[0]:
return self.find(matrix,rows,cols,path[1:],i-1,j)
else:
return False
def buildMatrix(self, matrix):
array = [[0]*self.cols for i in range(self.rows)]
for i in range(self.rows):
idx = 0
for j in range(self.cols):
array[i][j] = matrix[idx]
idx += 1
return array
13. 机器人的运动范围
题目描述
地上有一个 m 行和 n 列的方格。一个机器人从坐标 (0, 0) 的格子开始移动,每一次只能向左右上下四个方向移动一格,但是不能进入行坐标和列坐标的数位之和大于 k 的格子。
例如,当 k 为 18 时,机器人能够进入方格 (35,37),因为 3+5+3+7=18。但是,它不能进入方格 (35,37),因为 3+5+3+8=19。请问该机器人能够达到多少个格子?
解题思路
private static final int[][] next = {{0, -1}, {0, 1}, {-1, 0}, {1, 0}};
private int cnt = 0;
private int rows;
private int cols;
private int threshold;
private int[][] digitSum;
public int movingCount(int threshold, int rows, int cols) {
this.rows = rows;
this.cols = cols;
this.threshold = threshold;
initDigitSum();
boolean[][] marked = new boolean[rows][cols];
dfs(marked, 0, 0);
return cnt;
}
private void dfs(boolean[][] marked, int r, int c) {
if (r < 0 || r >= rows || c < 0 || c >= cols || marked[r][c])
return;
marked[r][c] = true;
if (this.digitSum[r][c] > this.threshold)
return;
cnt++;
for (int[] n : next)
dfs(marked, r + n[0], c + n[1]);
}
private void initDigitSum() {
int[] digitSumOne = new int[Math.max(rows, cols)];
for (int i = 0; i < digitSumOne.length; i++) {
int n = i;
while (n > 0) {
digitSumOne[i] += n % 10;
n /= 10;
}
}
this.digitSum = new int[rows][cols];
for (int i = 0; i < this.rows; i++)
for (int j = 0; j < this.cols; j++)
this.digitSum[i][j] = digitSumOne[i] + digitSumOne[j];
}
# -*- coding:utf-8 -*-
class Solution:
def __init__(self):
self.acc = 0
def movingCount(self, threshold, rows, cols):
# write code here
self.threshold = threshold
self.rows = rows
self.cols = cols
self.board = [[0 for _ in range(cols)] for _ in range(rows)]
self.traverse(0,0)
return self.acc
def block(self, r, c):
s = sum(map(int,str(r)+str(c)))
return s>self.threshold
def traverse(self, r, c):
if not (0<=r<self.rows and 0<=c<self.cols): return
if self.board[r][c]!=0: return
if self.board[r][c]==-1 or self.block(r,c):
self.board[r][c]=-1
return
self.board[r][c] = 1
self.acc += 1
self.traverse(r+1,c)
self.traverse(r-1,c)
self.traverse(r,c+1)
self.traverse(r,c-1)
14. 剪绳子
题目描述
把一根绳子剪成多段,并且使得每段的长度乘积最大。
n = 2
return 1 (2 = 1 + 1)
n = 10
return 36 (10 = 3 + 3 + 4)
解题思路
贪心
尽可能多剪长度为 3 的绳子,并且不允许有长度为 1 的绳子出现。如果出现了,就从已经切好长度为 3 的绳子中拿出一段与长度为 1 的绳子重新组合,把它们切成两段长度为 2 的绳子。
证明:当 n >= 5 时,3(n - 3) - 2(n - 2) = n - 5 >= 0。因此把长度大于 5 的绳子切成两段,令其中一段长度为 3 可以使得两段的乘积最大。
public int integerBreak(int n) {
if (n < 2)
return 0;
if (n == 2)
return 1;
if (n == 3)
return 2;
int timesOf3 = n / 3;
if (n - timesOf3 * 3 == 1)
timesOf3--;
int timesOf2 = (n - timesOf3 * 3) / 2;
return (int) (Math.pow(3, timesOf3)) * (int) (Math.pow(2, timesOf2));
}
def integerBreak(n):
if n < 2:
return 0
if n == 2:
return 1
if n == 3:
return 2
timesOf3 = n // 3
if n - timesOf3 * 3 == 1:
timesOf3 -= 1
timesOf2 = (n - timesOf3 * 3) // 2
return pow(3, timesOf3) * pow(2, timesOf2)
15. 二进制中 1 的个数
题目描述
输入一个整数,输出该数二进制表示中 1 的个数。
n&(n-1)
该位运算去除 n 的位级表示中最低的那一位。
n : 10110100
n-1 : 10110011
n&(n-1) : 10110000
时间复杂度:O(M),其中 M 表示 1 的个数。
public int NumberOf1(int n) {
int cnt = 0;
while (n != 0) {
cnt++;
n &= (n - 1);
}
return cnt;
}
Integer.bitCount()
public int NumberOf1(int n) {
return Integer.bitCount(n);
}
# -*- coding:utf-8 -*-
class Solution:
def NumberOf1(self, n):
# write code here
if n<0:
n=n&0xFFFFFFFF #把负号去掉,如果负号在后面会陷入死循环
return bin(n).count('1')
# -*- coding:utf-8 -*-
class Solution:
def NumberOf1(self, n):
# write code here
return sum([(n>>i & 1) for i in range(0,32)])
16. 数值的整数次方
题目描述
给定一个 double 类型的浮点数 base 和 int 类型的整数 exponent,求 base 的 exponent 次方。
解题思路
下面的讨论中 x 代表 base,n 代表 exponent。
因为 (x*x)n/2 可以通过递归求解,并且每次递归 n 都减小一半,因此整个算法的时间复杂度为 O(logN)。
public double Power(double base, int exponent) {
if (exponent == 0)
return 1;
if (exponent == 1)
return base;
boolean isNegative = false;
if (exponent < 0) {
exponent = -exponent;
isNegative = true;
}
double pow = Power(base * base, exponent / 2);
if (exponent % 2 != 0)
pow = pow * base;
return isNegative ? 1 / pow : pow;
}
# -*- coding:utf-8 -*-
class Solution:
def Power(self, base, exponent):
# write code here
flag = 0
if base == 0:
return False
if exponent == 0:
return 1
if exponent < 0:
flag = 1
result = 1
for i in range(abs(exponent)):
result *= base
if flag == 1:
result = 1 / result
return result
# -*- coding:utf-8 -*-
class Solution:
def Power(self, base, exponent):
# write code here
return pow(base, exponent)
动态规划
public int integerBreak(int n) {
int[] dp = new int[n + 1];
dp[1] = 1;
for (int i = 2; i <= n; i++)
for (int j = 1; j < i; j++)
dp[i] = Math.max(dp[i], Math.max(j * (i - j), dp[j] * (i - j)));
return dp[n];
}
17. 打印从 1 到最大的 n 位数
题目描述
输入数字 n,按顺序打印出从 1 到最大的 n 位十进制数。比如输入 3,则打印出 1、2、3 一直到最大的 3 位数即 999。
解题思路
由于 n 可能会非常大,因此不能直接用 int 表示数字,而是用 char 数组进行存储。
使用回溯法得到所有的数。
public void print1ToMaxOfNDigits(int n) {
if (n <= 0)
return;
char[] number = new char[n];
print1ToMaxOfNDigits(number, 0);
}
private void print1ToMaxOfNDigits(char[] number, int digit) {
if (digit == number.length) {
printNumber(number);
return;
}
for (int i = 0; i < 10; i++) {
number[digit] = (char) (i + '0');
print1ToMaxOfNDigits(number, digit + 1);
}
}
private void printNumber(char[] number) {
int index = 0;
while (index < number.length && number[index] == '0')
index++;
while (index < number.length)
System.out.print(number[index++]);
System.out.println();
}
def numbersByRecursion(n,largest,result):
def recursion(num,largest,result):
if num <= largest:
result.append(num)
return recursion(num+1,largest,result)
else:
return result
return recursion(n,largest,result)
n = 2
result = []
largest = pow(10,n)-1
re = numbersByRecursion(1, largest, result)
print (re)
18.1 在 O(1) 时间内删除链表节点
解题思路
① 如果该节点不是尾节点,那么可以直接将下一个节点的值赋给该节点,然后令该节点指向下下个节点,再删除下一个节点,时间复杂度为 O(1)。
② 否则,就需要先遍历链表,找到节点的前一个节点,然后让前一个节点指向 null,时间复杂度为 O(N)。
综上,如果进行 N 次操作,那么大约需要操作节点的次数为 N-1+N=2N-1,其中 N-1 表示 N-1 个不是尾节点的每个节点以 O(1) 的时间复杂度操作节点的总次数,N 表示 1 个尾节点以 O(N) 的时间复杂度操作节点的总次数。(2N-1)/N ~ 2,因此该算法的平均时间复杂度为 O(1)。
public ListNode deleteNode(ListNode head, ListNode tobeDelete) {
if (head == null || head.next == null || tobeDelete == null)
return null;
if (tobeDelete.next != null) {
// 要删除的节点不是尾节点
ListNode next = tobeDelete.next;
tobeDelete.val = next.val;
tobeDelete.next = next.next;
} else {
ListNode cur = head;
while (cur.next != tobeDelete)
cur = cur.next;
cur.next = null;
}
return head;
}
动态规划
public int integerBreak(int n) {
int[] dp = new int[n + 1];
dp[1] = 1;
for (int i = 2; i <= n; i++)
for (int j = 1; j < i; j++)
dp[i] = Math.max(dp[i], Math.max(j * (i - j), dp[j] * (i - j)));
return dp[n];
}
class ListNode:
def __init__(self, x = None):
self.val = x
self.next = None
def __del__(self):
self.val = None
self.next = None
class Solution:
def list_generate(self, lst):
"""
生成链表
"""
if not lst:
return None
list_node = ListNode()
list_node.value = lst[0]
if len(lst) == 1:
list_node.next_node = None
else:
list_node.next_node = self.list_generate(lst[1:])
return list_node
def find_node(self, node, target_value):
"""
根据给定的目标值,找出指定节点的位置
非题目要求,只是为了测试验证
"""
if not target_value:
return False
while node:
if node.value == target_value:
return node
node = node.next_node
return False
def delete_node(self, head_node, del_node):
"""
删除指定节点
"""
if not (head_node and del_node):
return False
if del_node.next_node:
# 删除的节点不是尾节点,而且不是唯一一个节点
del_next_node = del_node.next_node
del_node.value = del_next_node.value
del_node.next_node = del_next_node.next_node
del_next_node.__del__()
del_next_node.__del__()
elif del_node == head_node:
# 唯一一个节点,删除头节点
head_node = None
del_node = None
else:
# 删除节点为尾节点
node = head_node
while node.next_node != del_node:
node = node.next_node
node.next_node = None
del_node = None
return head_node
if __name__ == '__main__':
solution = Solution()
head_node = solution.list_generate(['a', 'b', 'c', 'e', 'd', 'd'])
target_value = 'a'
target_node = solution.find_node(head_node, target_value)
if target_node:
print (target_node.value)
head_node = solution.delete_node(head_node, target_node)
node = head_node
if node:
while node:
print (node.value)
node = node.next_node
if node:
print ('->')
else:
print ('wrong')
18.2 删除链表中重复的结点
题目描述
解题描述
public ListNode deleteDuplication(ListNode pHead) {
if (pHead == null || pHead.next == null)
return pHead;
ListNode next = pHead.next;
if (pHead.val == next.val) {
while (next != null && pHead.val == next.val)
next = next.next;
return deleteDuplication(next);
} else {
pHead.next = deleteDuplication(pHead.next);
return pHead;
}
}
# -*- coding:utf-8 -*-
# class ListNode:
# def __init__(self, x):
# self.val = x
# self.next = None
class Solution:
def deleteDuplication(self, pHead):
# write code here
if not pHead or not pHead.next:
return pHead
next = pHead.next
if pHead.val == next.val:
while next and pHead.val == next.val:
next = next.next
return self.deleteDuplication(next)
else:
pHead.next = self.deleteDuplication(pHead.next)
return pHead
19. 正则表达式匹配
题目描述
请实现一个函数用来匹配包括 '.' 和 '*' 的正则表达式。模式中的字符 '.' 表示任意一个字符,而 '*' 表示它前面的字符可以出现任意次(包含 0 次)。
在本题中,匹配是指字符串的所有字符匹配整个模式。例如,字符串 "aaa" 与模式 "a.a" 和 "ab*ac*a" 匹配,但是与 "aa.a" 和 "ab*a" 均不匹配。
解题思路
应该注意到,'.' 是用来当做一个任意字符,而 '*' 是用来重复前面的字符。这两个的作用不同,不能把 '.' 的作用和 '*' 进行类比,从而把它当成重复前面字符一次。
public boolean match(char[] str, char[] pattern) {
int m = str.length, n = pattern.length;
boolean[][] dp = new boolean[m + 1][n + 1];
dp[0][0] = true;
for (int i = 1; i <= n; i++)
if (pattern[i - 1] == '*')
dp[0][i] = dp[0][i - 2];
for (int i = 1; i <= m; i++)
for (int j = 1; j <= n; j++)
if (str[i - 1] == pattern[j - 1] || pattern[j - 1] == '.')
dp[i][j] = dp[i - 1][j - 1];
else if (pattern[j - 1] == '*')
if (pattern[j - 2] == str[i - 1] || pattern[j - 2] == '.') {
dp[i][j] |= dp[i][j - 1]; // a* counts as single a
dp[i][j] |= dp[i - 1][j]; // a* counts as multiple a
dp[i][j] |= dp[i][j - 2]; // a* counts as empty
} else
dp[i][j] = dp[i][j - 2]; // a* only counts as empty
return dp[m][n];
}
# -*- coding:utf-8 -*-
class Solution:
# s, pattern都是字符串
def match(self, s, pattern):
# write code here
if (len(s) == 0 and len(pattern) == 0):
return True
if (len(s) > 0 and len(pattern) == 0):
return False
if (len(pattern) > 1 and pattern[1] == '*'):
if (len(s) > 0 and (s[0] == pattern[0] or pattern[0] == '.')):
return (self.match(s, pattern[2:]) or self.match(s[1:], pattern[2:]) or self.match(s[1:], pattern))
else:
return self.match(s, pattern[2:])
if (len(s) > 0 and (pattern[0] == '.' or pattern[0] == s[0])):
return self.match(s[1:], pattern[1:])
return False
# -*- coding:utf-8 -*-
import re
class Solution:
# s, pattern都是字符串
def match(self, s, pattern):
# write code here
if s == None or pattern == None:
return False
if s == "" and pattern == "":
return True
if pattern == "" and s != "":
return False
res = re.compile(str(pattern)+"$")
result = res.match(str(s))
if result is None:
return False
else:
return True
参考文献
- 何海涛. 剑指 Offer[M]. 电子工业出版社, 2012.