CS-Notes/notes/12. 矩阵中的路径.md
2021-03-23 02:48:19 +08:00

79 lines
3.3 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# 12. 矩阵中的路径
[牛客网](https://www.nowcoder.com/practice/69fe7a584f0a445da1b6652978de5c38?tpId=13&tqId=11218&tab=answerKey&from=cyc_github)
## 题目描述
判断在一个矩阵中是否存在一条包含某字符串所有字符的路径。路径可以从矩阵中的任意一个格子开始,每一步可以在矩阵中向上下左右移动一个格子。如果一条路径经过了矩阵中的某一个格子,则该路径不能再进入该格子。
例如下面的矩阵包含了一条 bfce 路径。
<div align="center"> <img src="https://cs-notes-1256109796.cos.ap-guangzhou.myqcloud.com/1db1c7ea-0443-478b-8df9-7e33b1336cc4.png" width="200px"> </div><br>
## 解题思路
使用回溯法backtracking进行求解它是一种暴力搜索方法通过搜索所有可能的结果来求解问题。回溯法在一次搜索结束时需要进行回溯回退将这一次搜索过程中设置的状态进行清除从而开始一次新的搜索过程。例如下图示例中从 f 开始,下一步有 4 种搜索可能,如果先搜索 b需要将 b 标记为已经使用,防止重复使用。在这一次搜索结束之后,需要将 b 的已经使用状态清除,并搜索 c。
<div align="center"> <img src="https://cs-notes-1256109796.cos.ap-guangzhou.myqcloud.com/dc964b86-7a08-4bde-a3d9-e6ddceb29f98.png" width="200px"> </div><br>
本题的输入是数组而不是矩阵(二维数组),因此需要先将数组转换成矩阵。
```java
public class Solution {
private final static int[][] next = {{0, -1}, {0, 1}, {-1, 0}, {1, 0}};
private int rows;
private int cols;
public boolean hasPath (String val, int rows, int cols, String path) {
if (rows == 0 || cols == 0) return false;
this.rows = rows;
this.cols = cols;
char[] array = val.toCharArray();
char[][] matrix = buildMatrix(array);
char[] pathList = path.toCharArray();
boolean[][] marked = new boolean[rows][cols];
for (int i = 0; i < rows; i++)
for (int j = 0; j < cols; j++)
if (backtracking(matrix, pathList, marked, 0, i, j))
return true;
return false;
}
private boolean backtracking(char[][] matrix, char[] pathList,
boolean[][] marked, int pathLen, int r, int c) {
if (pathLen == pathList.length) return true;
if (r < 0 || r >= rows || c < 0 || c >= cols
|| matrix[r][c] != pathList[pathLen] || marked[r][c]) {
return false;
}
marked[r][c] = true;
for (int[] n : next)
if (backtracking(matrix, pathList, marked, pathLen + 1, r + n[0], c + n[1]))
return true;
marked[r][c] = false;
return false;
}
private char[][] buildMatrix(char[] array) {
char[][] matrix = new char[rows][cols];
for (int r = 0, idx = 0; r < rows; r++)
for (int c = 0; c < cols; c++)
matrix[r][c] = array[idx++];
return matrix;
}
public static void main(String[] args) {
Solution solution = new Solution();
String val = "ABCESFCSADEE";
int rows = 3;
int cols = 4;
String path = "ABCCED";
boolean res = solution.hasPath(val, rows, cols, path);
System.out.println(res);
}
}
```